内容简介:将\(W\)编码得到\(W_e\)。动态规划,\(f_1[i]\)表示\(S[1..i]\)的译码方案数,\(f_2[i]\)表示\(S[i..len(S)]\)的译码方案数。设\(W_e\)在\(S\)中的出现的起始位置集合为\(M\),则答案为\(\sum\limits_{m_i \in M} f_1[m_i-1] \times f_2[m_i+len(W_e)]\)。时间复杂度\(O(n)\)。
将\(W\)编码得到\(W_e\)。动态规划,\(f_1[i]\)表示\(S[1..i]\)的译码方案数,\(f_2[i]\)表示\(S[i..len(S)]\)的译码方案数。设\(W_e\)在\(S\)中的出现的起始位置集合为\(M\),则答案为\(\sum\limits_{m_i \in M} f_1[m_i-1] \times f_2[m_i+len(W_e)]\)。时间复杂度\(O(n)\)。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
const int mod = 1000000007;
char s1[10];
char s[400010],w[400010],we[2000010],nxt[2000010];
int f1[400010],f2[400010];
int main() {
int T;
scanf("%d",&T);
for (; T--;) {
scanf("%s%s",s + 1,w + 1);
int n = strlen(s + 1),m = strlen(w + 1);
int m1 = 0;
for (int i = 1; i <= m; i++) {
int x = w[i] - 'a' + 1;
int l = m1 + 1;
for (; x > 0; x >>= 1)
we[++m1] = (x & 1) + '0';
reverse(we + l,we + m1 + 1);
}
we[m1 + 1] = 0;
if (m1 > n) {
puts("0");
continue;
}
for (int i = 2,j = 0; i <= m1; i++) {
for (; j > 0 && we[j + 1] != we[i]; j = nxt[j]);
if (we[j + 1] == we[i])
j++;
nxt[i] = j;
}
f1[0] = 1;
for (int i = 1; i <= n; i++) {
f1[i] = 0;
for (int j = 1; j <= 26; j++) {
int tot = 0,x = j;
for (; x > 0; x >>= 1)
s1[++tot] = (x & 1) + '0';
reverse(s1 + 1,s1 + tot + 1);
if (i - tot >= 0) {
bool flag = 1;
for (int j = 1; j <= tot; j++)
if (s[i - tot + j] != s1[j]) {
flag = 0;
break;
}
if (flag)
f1[i] = (f1[i] + f1[i - tot]) % mod;
}
}
}
f2[n + 1] = 1;
for (int i = n; i >= 1; i--) {
f2[i] = 0;
for (int j = 1; j <= 26; j++) {
int tot = 0,x = j;
for (; x > 0; x >>= 1)
s1[++tot] = (x & 1) + '0';
reverse(s1 + 1,s1 + tot + 1);
if (i + tot <= n + 1) {
bool flag = 1;
for (int j = 1; j <= tot; j++)
if (s[i - 1 + j] != s1[j]) {
flag = 0;
break;
}
if (flag)
f2[i] = (f2[i] + f2[i + tot]) % mod;
}
}
}
int ans = 0;
for (int i = 1,j = 0; i <= n; i++) {
for (; j > 0 && we[j + 1] != s[i]; j = nxt[j]);
if (we[j + 1] == s[i])
j++;
if (j == m1)
ans = (ans + (long long)f1[i - m1] * f2[i + 1] % mod) % mod;
}
printf("%d\n",ans);
}
return 0;
}
以上所述就是小编给大家介绍的《Codechef CLHMSG Hidden Message KMP+动态规划》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Learn Python the Hard Way
Zed Shaw / Example Product Manufacturer / 2011
This is a very beginner book for people who want to learn to code. If you can already code then the book will probably drive you insane. It's intended for people who have no coding chops to build up t......一起来看看 《Learn Python the Hard Way》 这本书的介绍吧!