内容简介:It is possible to show that the square root of two can be expressed as an infinite continued fraction.1 + 1/2 = 3/2 = 1.5
Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fraction.
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666…
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379…
The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
平方根逼近
2的平方根可以用一个无限连分数表示:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666…
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379…
接下来的三个迭代展开式分别是99/70、239/169和577/408,但是直到第八个迭代展开式1393/985,分子的位数第一次超过分母的位数。
在前一千个迭代展开式中,有多少个分数分子的位数多于分母的位数?
//(Problem 57)Square root convergents // Completed on Wed, 12 Feb 2014, 04:45 // Language: C // // 版权所有(C)wu yudong // 博客地址:http://www.wuyudong.com #include<stdio.h> int add(int des[],int n1,int src[],int n2){ int i,f; for(i=0 , f = 0 ; i < n1 || i < n2 ; i++){ des[i] += ( f + src[i] ) ; f = des[i]/10 ; des[i] %= 10 ; } if(f) des[i++] = f ; return i; } int main(){ int num = 1 ,sum = 0 , k; int array[2][500] = {0} ; int nn = 1 ,dn = 1 , f = 0 ;//nn分子长度,dn分母长度,f分子位置 array[0][0] = 3 ; array[1][0] = 2 ; while(num<1000){ //分子加分母放到分子位置成为下一个分母 k = add(array[f],nn,array[1-f],dn); //分子加分母放到分母位置成为下一个分子 nn = add( array[1-f],dn,array[f],k ) ; dn = k ; f = 1 - f ; if(nn > dn) sum++; num++; } printf("%d\n",sum); return 0; }
Answer: 153
Completed on Wed, 12 Feb 2014, 12:45
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Distributed Systems
Sukumar Ghosh / Chapman and Hall/CRC / 2014-7-14 / USD 119.95
Distributed Systems: An Algorithmic Approach, Second Edition provides a balanced and straightforward treatment of the underlying theory and practical applications of distributed computing. As in the p......一起来看看 《Distributed Systems》 这本书的介绍吧!