Linux wait返回及timer_create问题解决

栏目: 服务器 · Linux · 发布时间: 6年前

内容简介:前言前段时间查一个问题,发现应用层在使用wait函数时,在没有等到信号的情况下,wait函数返回了,并且返回值为0,没有超时及异常提示,不符合常理,跟进后发现,虽然c库代码编写不够严谨,但根源是应用层代码对timer_create的不当使用,引入了隐患。在这做一个分析,作为以后分析同类问题的参考。一、 wait函数不合理返回问题

前言

前段时间查一个问题,发现应用层在使用wait函数时,在没有等到信号的情况下,wait函数返回了,并且返回值为0,没有超时及异常提示,不符合常理,跟进后发现,虽然c库代码编写不够严谨,但根源是应用层代码对timer_create的不当使用,引入了隐患。在这做一个分析,作为以后分析同类问题的参考。

一、 wait函数不合理返回问题

如下面代码,在postAndWait函数中,先把task queue进处理队列,然后调用wait等待task处理完成发送信号,接着在run函数中运行task及发送信号,当wait函数收到信号后,正常返回,这为正常的运行流程。但发现有时出现了在run中,task还没运行,也没有发送信号,wait函数就已经返回,并且返回值为0(success)。

frameworks\base\libs\hwui\renderthread\ RenderProxy.cpp

void* RenderProxy::postAndWait(MethodInvokeRenderTask* task) {

void* retval;

task->setReturnPtr(&retval);

SignalingRenderTask syncTask(task, &mSyncMutex, &mSyncCondition);

AutoMutex _lock(mSyncMutex);

mRenderThread.queue(&syncTask);    // queue task

mSyncCondition.wait(mSyncMutex);  // 等待task运行完成发送信号

return retval;   

// 若在task还没运行,wait就返回,task被释放,task运行线程不知道task被释放,一到task运行就出问题

}

frameworks\base\libs\hwui\renderthread\ RenderTask.cpp

void SignalingRenderTask::run() {

mTask->run();        // task的运行

mLock->lock();

mSignal->signal();      // 发送信号给wait

mLock->unlock();

}

二、wait不合理返回分析

跟进内核代码发现,当wait函数在等待时,wait所在的线程被挂起,正常情况下,当task的运行线程给wait所在的线程发送信号后,wait所在的线程被设置为可运行状态,等待系统调度运行并正常返回,wait函数调用路径及返回如下,调用路径如绿色标示的,返回点如紫色标示。(发送信号流程的代码位置与wait流程代码处于相同文件中,可自行跟踪)

system\core\include\utils\ Condition.h

inline status_t Condition::wait(Mutex& mutex) {

return -pthread_cond_wait(&mCond, &mutex.mMutex);

}

bionic\libc\bionic\ Pthread_cond.cpp

int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex) {

return __pthread_cond_timedwait(cond, mutex, NULL,  COND_GET_CLOCK(cond->value));

}

bionic\libc\bionic\ Pthread_cond.cpp

__LIBC_HIDDEN__

int __pthread_cond_timedwait(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* abstime, clockid_t clock) {

timespec ts;

timespec* tsp;

if (abstime != NULL) {        // 没有设置超时时间,不走这里

if (__timespec_from_absolute(&ts, abstime, clock) < 0) {

return ETIMEDOUT;

}

tsp = &ts;

} else {

tsp = NULL;

}

return __pthread_cond_timedwait_relative(cond, mutex, tsp);

}

bionic\libc\bionic\ Pthread_cond.cpp

__LIBC_HIDDEN__

int __pthread_cond_timedwait_relative(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* reltime) {

int old_value = cond->value;

pthread_mutex_unlock(mutex);

int status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond->value), old_value, reltime);

pthread_mutex_lock(mutex);

if (status == -ETIMEDOUT) {

return ETIMEDOUT;

}

return 0;

}

bionic\libc\private\ Bionic_futex.h

static inline int __futex_wait_ex(volatile void* ftx, bool shared, int value, const struct timespec* timeout) {

return __futex(ftx, shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, value, timeout);

}

bionic\libc\private\ Bionic_futex.h

static inline __always_inline int __futex(volatile void* ftx, int op, int value, const struct timespec* timeout) {

// Our generated syscall assembler sets errno, but our callers (pthread functions) don't want to.

int saved_errno = errno;

int result = syscall(__NR_futex, ftx, op, value, timeout);

if (__predict_false(result == -1)) {

result = -errno;

errno = saved_errno;

}

return result;

}

kernel\kernel\ Futex.c

SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,

struct timespec __user *, utime, u32 __user *, uaddr2,

u32, val3)

{

struct timespec ts;

ktime_t t, *tp = NULL;

u32 val2 = 0;

int cmd = op & FUTEX_CMD_MASK;

if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||

cmd == FUTEX_WAIT_BITSET ||

cmd == FUTEX_WAIT_REQUEUE_PI)) {

if (copy_from_user(&ts, utime, sizeof(ts)) != 0)

return -EFAULT;

if (!timespec_valid(&ts))

return -EINVAL;

t = timespec_to_ktime(ts);

if (cmd == FUTEX_WAIT)

t = ktime_add_safe(ktime_get(), t);

tp = &t;

}

/*

* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.

* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.

*/

if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||

cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)

val2 = (u32) (unsigned long) utime;

return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);

}

kernel\kernel\ Futex.c

long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,

u32 __user *uaddr2, u32 val2, u32 val3)

{

int cmd = op & FUTEX_CMD_MASK;

unsigned int flags = 0;

if (!(op & FUTEX_PRIVATE_FLAG))

flags |= FLAGS_SHARED;

if (op & FUTEX_CLOCK_REALTIME) {

flags |= FLAGS_CLOCKRT;

if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)

return -ENOSYS;

}

switch (cmd) {

case FUTEX_LOCK_PI:

case FUTEX_UNLOCK_PI:

case FUTEX_TRYLOCK_PI:

case FUTEX_WAIT_REQUEUE_PI:

case FUTEX_CMP_REQUEUE_PI:

if (!futex_cmpxchg_enabled)

return -ENOSYS;

}

switch (cmd) {

case FUTEX_WAIT:

val3 = FUTEX_BITSET_MATCH_ANY;

case FUTEX_WAIT_BITSET:

return futex_wait(uaddr, flags, val, timeout, val3);

case FUTEX_WAKE:

val3 = FUTEX_BITSET_MATCH_ANY;

case FUTEX_WAKE_BITSET:

return futex_wake(uaddr, flags, val, val3);

case FUTEX_REQUEUE:

return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);

case FUTEX_CMP_REQUEUE:

return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);

case FUTEX_WAKE_OP:

return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);

case FUTEX_LOCK_PI:

return futex_lock_pi(uaddr, flags, val, timeout, 0);

case FUTEX_UNLOCK_PI:

return futex_unlock_pi(uaddr, flags);

case FUTEX_TRYLOCK_PI:

return futex_lock_pi(uaddr, flags, 0, timeout, 1);

case FUTEX_WAIT_REQUEUE_PI:

val3 = FUTEX_BITSET_MATCH_ANY;

return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,

uaddr2);

case FUTEX_CMP_REQUEUE_PI:

return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);

}

return -ENOSYS;

}

kernel\kernel\ Futex.c

static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,

ktime_t *abs_time, u32 bitset)

{

struct hrtimer_sleeper timeout, *to = NULL;

struct restart_block *restart;

struct futex_hash_bucket *hb;

struct futex_q q = futex_q_init;

int ret;

if (!bitset)

return -EINVAL;

q.bitset = bitset;

if (abs_time) {

to = &timeout;

hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?

CLOCK_REALTIME : CLOCK_MONOTONIC,

HRTIMER_MODE_ABS);

hrtimer_init_sleeper(to, current);

hrtimer_set_expires_range_ns(&to->timer, *abs_time,

current->timer_slack_ns);

}

retry:

/*

* Prepare to wait on uaddr. On success, holds hb lock and increments

* q.key refs.

*/

ret = futex_wait_setup(uaddr, val, flags, &q, &hb);

if (ret)

goto out;

/* queue_me and wait for wakeup, timeout, or a signal. */

futex_wait_queue_me(hb, &q, to);

/* If we were woken (and unqueued), we succeeded, whatever. */

ret = 0;

/* unqueue_me() drops q.key ref */

if (!unqueue_me(&q)) {                 

/* unqueue_me返回值情况 */

/* 1 - if the futex_q was still queued (and we removed unqueued it); */

/* 0 - if the futex_q was already removed by the waking thread(发送信号唤醒的情况) */ 

goto out;                        // 正常等到信号后返回走这里

}

ret = -ETIMEDOUT;

if (to && !to->task) {

goto out;

}

/*

* We expect signal_pending(current), but we might be the

* victim of a spurious wakeup as well.

*/

if (!signal_pending(current)) {

trace_printk("retry\n");

goto retry;

}

ret = -ERESTARTSYS;

if (!abs_time) {

goto out;

}

restart = &current_thread_info()->restart_block;

restart->fn = futex_wait_restart;

restart->futex.uaddr = uaddr;

restart->futex.val = val;

restart->futex.time = abs_time->tv64;

restart->futex.bitset = bitset;

restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;

ret = -ERESTART_RESTARTBLOCK;

out:

if (to) {

hrtimer_cancel(&to->timer);

destroy_hrtimer_on_stack(&to->timer);

}

return ret;            // 正常返回值为0

}

kernel\kernel\ Futex.c

static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,

struct hrtimer_sleeper *timeout)

{

/*

* The task state is guaranteed to be set before another task can

* wake it. set_current_state() is implemented using set_mb() and

* queue_me() calls spin_unlock() upon completion, both serializing

* access to the hash list and forcing another memory barrier.

*/

set_current_state(TASK_INTERRUPTIBLE);

queue_me(q, hb);

/* Arm the timer */

if (timeout) {

hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

if (!hrtimer_active(&timeout->timer))

timeout->task = NULL;

}

/*

* If we have been removed from the hash list, then another task

* has tried to wake us, and we can skip the call to schedule().

*/

if (likely(!plist_node_empty(&q->list))) {

/*

* If the timer has already expired, current will already be

* flagged for rescheduling. Only call schedule if there

* is no timeout, or if it has yet to expire.

*/

if (!timeout || timeout->task) {

freezable_schedule();       

}

}

__set_current_state(TASK_RUNNING);

}

如果该等待线程使用timer_create创建了定时器,并且创建的定时器超时是给当前线程发送信号(timer_create的创建在第4节分析),当定时器超时后,就会把当前线程设置为可运行的状态,等待系统调度运行。若这时该线程刚好调用了wait在等待信号,由于该线程已经被设置为可运行状态,当调度到该线程运行时,futex_wait_queue_me函数的freezable_schedule()就会返回,这时futex_wait返回流程与返回值都与正常接收到信号时返回的不一样,如下面代码标示:

kernel\kernel\ Futex.c

static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,

ktime_t *abs_time, u32 bitset)

{

struct hrtimer_sleeper timeout, *to = NULL;

struct restart_block *restart;

struct futex_hash_bucket *hb;

struct futex_q q = futex_q_init;

int ret;

if (!bitset)

return -EINVAL;

q.bitset = bitset;

if (abs_time) {

to = &timeout;

hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?

CLOCK_REALTIME : CLOCK_MONOTONIC,

HRTIMER_MODE_ABS);

hrtimer_init_sleeper(to, current);

hrtimer_set_expires_range_ns(&to->timer, *abs_time,

current->timer_slack_ns);

}

retry:

/*

* Prepare to wait on uaddr. On success, holds hb lock and increments

* q.key refs.

*/

ret = futex_wait_setup(uaddr, val, flags, &q, &hb);

if (ret)

goto out;

/* queue_me and wait for wakeup, timeout, or a signal. */

futex_wait_queue_me(hb, &q, to);

/* If we were woken (and unqueued), we succeeded, whatever. */

ret = 0;

/* unqueue_me() drops q.key ref */

if (!unqueue_me(&q)) {                 

/* unqueue_me返回值情况 */

/* 1 - if the futex_q was still queued (and we removed unqueued it); */

/* 0 - if the futex_q was already removed by the waking thread(发送信号唤醒的情况) */ 

goto out;  // 不是等待的信号唤醒,futex_q was still queued,unqueue_me返回1,流程不走这

}

ret = -ETIMEDOUT;

if (to && !to->task) {

goto out;          //没有设置超时返回,没走这

}

/*

* We expect signal_pending(current), but we might be the

* victim of a spurious wakeup as well.

*/

if (!signal_pending(current)) {

goto retry;        // 是该线程定时器唤醒,不走这

}

ret = -ERESTARTSYS;

if (!abs_time) {

goto out;        // 最后流程到这里,则ret = -ERESTARTSYS

}

restart = &current_thread_info()->restart_block;

restart->fn = futex_wait_restart;

restart->futex.uaddr = uaddr;

restart->futex.val = val;

restart->futex.time = abs_time->tv64;

restart->futex.bitset = bitset;

restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;

ret = -ERESTART_RESTARTBLOCK;

out:

if (to) {

hrtimer_cancel(&to->timer);

destroy_hrtimer_on_stack(&to->timer);

}

return ret;            // 返回值为-ERESTARTSYS(-512)

}

从上面代码可以看出,futex_wait的返回值并不为0,但到了应用层得到的返回值就变成0了,分析后发现是c库的代码不严谨导致的,如下面代码:

bionic\libc\bionic\ Pthread_cond.cpp

__LIBC_HIDDEN__

int __pthread_cond_timedwait_relative(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* reltime) {

int old_value = cond->value;

pthread_mutex_unlock(mutex);

int status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond->value), old_value, reltime);

pthread_mutex_lock(mutex);

if (status == -ETIMEDOUT) {

return ETIMEDOUT;        // 只有超时返回时,才返回非0值,其它情况都是返回0

}

return 0;

}

这样就导致了上层无法识别出除了超时之外的其它情况返回。

三、定时器超时唤醒线程的流程

定时器超时唤醒线程与发送信号唤醒线程流程不同,下面代码分析定时器唤醒时走的流程,调用路径如绿色标示(有关 linux 定时器的知识,可以搜索“linux定时器的实现”,可以找到很多介绍)。

kernel\kernel\Posix-timers.c

int posix_timer_event(struct k_itimer *timr, int si_private)  // posix定时器超时后调用到这里

{

struct task_struct *task;

int shared, ret = -1;

/*

* FIXME: if ->sigq is queued we can race with

* dequeue_signal()->do_schedule_next_timer().

*

* If dequeue_signal() sees the "right" value of

* si_sys_private it calls do_schedule_next_timer().

* We re-queue ->sigq and drop ->it_lock().

* do_schedule_next_timer() locks the timer

* and re-schedules it while ->sigq is pending.

* Not really bad, but not that we want.

*/

timr->sigq->info.si_sys_private = si_private;

rcu_read_lock();

task = pid_task(timr->it_pid, PIDTYPE_PID);

if (task) {

shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);

ret = send_sigqueue(timr->sigq, task, shared);

}

rcu_read_unlock();

/* If we failed to send the signal the timer stops. */

return ret > 0;

}

kernel\kernel\Signal.c

int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)

{

int sig = q->info.si_signo;

int sival = q->info.si_value.sival_int;

struct sigpending *pending;

unsigned long flags;

int ret, result;

BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));

ret = -1;

if (!likely(lock_task_sighand(t, &flags)))

goto ret;

ret = 1; /* the signal is ignored */

result = TRACE_SIGNAL_IGNORED;

if (!prepare_signal(sig, t, false))

goto out;

ret = 0;

if (unlikely(!list_empty(&q->list))) {

/*

* If an SI_TIMER entry is already queue just increment

* the overrun count.

*/

BUG_ON(q->info.si_code != SI_TIMER);

q->info.si_overrun++;

result = TRACE_SIGNAL_ALREADY_PENDING;

goto out;

}

q->info.si_overrun = 0;

signalfd_notify(t, sig);

pending = group ? &t->signal->shared_pending : &t->pending;

list_add_tail(&q->list, &pending->list);

sigaddset(&pending->signal, sig);

complete_signal(sig, t, group);

result = TRACE_SIGNAL_DELIVERED;

out:

trace_signal_generate(sig, &q->info, t, group, result);

unlock_task_sighand(t, &flags);

ret:

return ret;

}

kernel\kernel\Signal.c

static void complete_signal(int sig, struct task_struct *p, int group)

{

struct signal_struct *signal = p->signal;

struct task_struct *t;

/*

* Now find a thread we can wake up to take the signal off the queue.

*

* If the main thread wants the signal, it gets first crack.

* Probably the least surprising to the average bear.

*/

if (wants_signal(sig, p))

t = p;

else if (!group || thread_group_empty(p))

/*

* There is just one thread and it does not need to be woken.

* It will dequeue unblocked signals before it runs again.

*/

return;

else {

/*

* Otherwise try to find a suitable thread.

*/

t = signal->curr_target;

while (!wants_signal(sig, t)) {

t = next_thread(t);

if (t == signal->curr_target)

/*

* No thread needs to be woken.

* Any eligible threads will see

* the signal in the queue soon.

*/

return;

}

signal->curr_target = t;

}

/*

* Found a killable thread.  If the signal will be fatal,

* then start taking the whole group down immediately.

*/

if (sig_fatal(p, sig) &&

!(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&

!sigismember(&t->real_blocked, sig) &&

(sig == SIGKILL || !t->ptrace)) {

/*

* This signal will be fatal to the whole group.

*/

if (!sig_kernel_coredump(sig)) {

/*

* Start a group exit and wake everybody up.

* This way we don't have other threads

* running and doing things after a slower

* thread has the fatal signal pending.

*/

signal->flags = SIGNAL_GROUP_EXIT;

signal->group_exit_code = sig;

signal->group_stop_count = 0;

t = p;

do {

task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);

sigaddset(&t->pending.signal, SIGKILL);

signal_wake_up(t, 1);

} while_each_thread(p, t);

return;

}

}

/*

* The signal is already in the shared-pending queue.

* Tell the chosen thread to wake up and dequeue it.

*/

signal_wake_up(t, sig == SIGKILL);

return;

}

kernel\include\linux\Sched.h

static inline void signal_wake_up(struct task_struct *t, bool resume)

{

signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);

}

kernel\kernel\Signal.c

void signal_wake_up_state(struct task_struct *t, unsigned int state)

{

set_tsk_thread_flag(t, TIF_SIGPENDING);

/*

* TASK_WAKEKILL also means wake it up in the stopped/traced/killable

* case. We don't check t->state here because there is a race with it

* executing another processor and just now entering stopped state.

* By using wake_up_state, we ensure the process will wake up and

* handle its death signal.

*/

if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))

kick_process(t);

}

kernel\kernel\sched\Core.c

int wake_up_state(struct task_struct *p, unsigned int state)

{

return try_to_wake_up(p, state, 0);

}

kernel\kernel\sched\Core.c

static int

try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)

{

unsigned long flags;

int cpu, success = 0;

/*

* If we are going to wake up a thread waiting for CONDITION we

* need to ensure that CONDITION=1 done by the caller can not be

* reordered with p->state check below. This pairs with mb() in

* set_current_state() the waiting thread does.

*/

smp_mb__before_spinlock();

raw_spin_lock_irqsave(&p->pi_lock, flags);

if (!(p->state & state))

goto out;

success = 1; /* we're going to change ->state */

cpu = task_cpu(p);

if (p->on_rq && ttwu_remote(p, wake_flags))

goto stat;

#ifdef CONFIG_SMP

/*

* If the owning (remote) cpu is still in the middle of schedule() with

* this task as prev, wait until its done referencing the task.

*/

while (p->on_cpu)

cpu_relax();

/*

* Pairs with the smp_wmb() in finish_lock_switch().

*/

smp_rmb();

p->sched_contributes_to_load = !!task_contributes_to_load(p);

p->state = TASK_WAKING;

if (p->sched_class->task_waking)

p->sched_class->task_waking(p);

cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);

if (task_cpu(p) != cpu) {

wake_flags |= WF_MIGRATED;

set_task_cpu(p, cpu);

}

#endif /* CONFIG_SMP */

ttwu_queue(p, cpu);    /* run ttwu_do_activate->ttwu_do_wakeup */

stat:

ttwu_stat(p, cpu, wake_flags);

out:

raw_spin_unlock_irqrestore(&p->pi_lock, flags);

return success;

}

kernel\kernel\sched\Core.c

static void ttwu_queue(struct task_struct *p, int cpu)

{

struct rq *rq = cpu_rq(cpu);

#if defined(CONFIG_SMP)

if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {

sched_clock_cpu(cpu); /* sync clocks x-cpu */

ttwu_queue_remote(p, cpu);

return;

}

#endif

raw_spin_lock(&rq->lock);

ttwu_do_activate(rq, p, 0);

raw_spin_unlock(&rq->lock);

}

kernel\kernel\sched\Core.c

static void

ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)

{

#ifdef CONFIG_SMP

if (p->sched_contributes_to_load)

rq->nr_uninterruptible--;

#endif

ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);

ttwu_do_wakeup(rq, p, wake_flags);

}

kernel\kernel\sched\Core.c

static void

ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)

{

check_preempt_curr(rq, p, wake_flags);

trace_sched_wakeup(p, true);

p->state = TASK_RUNNING;    // 设置为可运行状态,后面任务被调度了就可以运行

#ifdef CONFIG_SMP

if (p->sched_class->task_woken)

p->sched_class->task_woken(rq, p);

if (rq->idle_stamp) {

u64 delta = rq->clock - rq->idle_stamp;

u64 max = 2*sysctl_sched_migration_cost;

if (delta > max)

rq->avg_idle = max;

else

update_avg(&rq->avg_idle, delta);

rq->idle_stamp = 0;

}

#endif

}

四、timer_create创建及参数说明

从前面的分析看,看起来只要在一个线程内创建了定时器,并且使用wait等待,就会存在问题,其实并不是这样,从timer_create创建时的参数及做实际情况发现,只有在timer_create使用不当时,才会存在该问题。timer_create函数如下(timer_create的实现在bionic\libc\bionic\ Posix_timers.cpp):

int timer_create(clockid_t clock_id, sigevent* evp, timer_t* timer_id);

这里我们只关心第二个参数,第二个参数 struct sigevent 用来设置定时器到时时的通知方式。该数据结构如下:

struct sigevent {

int sigev_notify; /* Notification method */ 

int sigev_signo; /* Notification signal */ 

union sigval sigev_value; /* Data passed with notification */ 

void (*sigev_notify_function) (union sigval);  /* Function used for thread notification (SIGEV_THREAD) */ 

void *sigev_notify_attributes;  /* Attributes for notification thread (SIGEV_THREAD) */ 

pid_t sigev_notify_thread_id;  /* ID of thread to signal (SIGEV_THREAD_ID) */ 

};

其中sigev_notify 表示通知方式,有如下几种:

通知方式 描述

SIGEV_NONE 定时器到期时不产生通知。。。

SIGEV_SIGNAL 定时器到期时将给进程投递一个信号,sigev_signo 可以用来指定使用什么信号。

SIGEV_THREAD 定时器到期时将启动新的线程进行需要的处理

SIGEV_THREAD_ID(仅针对 Linux) 定时器到期时将向指定线程发送信号。

■如果采用 SIGEV_NONE 方式,使用者必须调用timer_gettime 函数主动读取定时器已经走过的时间。类似轮询。

■如果采用 SIGEV_SIGNAL 方式,使用者可以选择使用什么信号,用 sigev_signo 表示信号值,比如 SIG_ALARM。

■如果使用 SIGEV_THREAD 方式,timer_create时会专门创建一个线程用于调用超时处理函数。需要设置 sigev_notify_function为超时调用函数入口;sigev_value 保存了传入 sigev_notify_function 的参数。sigev_notify_attributes 如果非空,则应该是一个指向 pthread_attr_t 的指针,用来设置线程的属性(比如 stack 大小,detach 状态等)。

■SIGEV_THREAD_ID 通常和 SIGEV_SIGNAL 联合使用,这样当 Timer 到期时,系统会向由 sigev_notify_thread_id 指定的线程发送信号,否则可能进程中的任意线程都可能收到该信号。这个选项是 Linux 对 POSIX 标准的扩展,目前主要是 GLibc 在实现 SIGEV_THREAD 的时候使用到,应用程序很少会需要用到这种模式。

从实际的情况看,当sigev_notify设置为SIGEV_SIGNAL时,当定时器超时就会唤醒调用timer_create创建定时器的线程,若该线程刚好在wait,就会出现前面分析的wait返回的情况。如果sigev_notify设置为SIGEV_THREAD,则在定时器超时后,只会唤醒专门创建的定时器处理函数线程,而不会唤醒调用timer_create创建定时器的线程,就不会存在前面分析的wait返回的情况。

五、总结从分析看,虽然c库代码处理不够严谨,但问题的根源还是timer_create使用不当引起的。在使用timer_create时,不建议把sigev_notify设置为SIGEV_SIGNAL,除非能明确该线程只是进行定时器超时的处理。

Linux公社的RSS地址: https://www.linuxidc.com/rssFeed.aspx

本文永久更新链接地址: https://www.linuxidc.com/Linux/2018-08/153460.htm


以上所述就是小编给大家介绍的《Linux wait返回及timer_create问题解决》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

人工智能基础

人工智能基础

汤晓鸥、陈玉琨 / 华东师范大学出版社 / 2018-4-1 / 35.00元

人工智能基础(高中版)》是面向高中学生的教材。讲授人工智能的发展历史、基本概念以及实际应用,使学生理解人工智能的基本原理,特别是数据、算法与应用之间的相互关系。并结合常见的应用场景,理解人工智能技术(包括感知与决策)的基本工作方式,通过动手实践,更深入地理解人工智能技术的原理、能力,以及在实用中面临的挑战。本书强调人工智能基本理念与原理的传递,注重创造力、想象力、整体思考,以及动手能力的提升。一起来看看 《人工智能基础》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具