linux内核数据结构之kfifo

栏目: 服务器 · Linux · 发布时间: 6年前

内容简介:1、前言最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内
编辑推荐:
本文来自于cnblogs,介绍了 linux 内核kfifo,kfifo的数据结构,测试程序等。

1、前言

最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

linux内核数据结构之kfifo

环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

2、linux 内核kfifo

kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

struct kfifo {

unsigned char *buffer; /* the buffer holding the data */

unsigned int size; /* the size of the allocated buffer */

unsigned int in; /* data is added at offset (in % size) */

unsigned int out; /* data is extracted from off. (out % size) */

spinlock_t *lock; /* protects concurrent modifications */

};

kfifo提供的方法有:

//根据给定buffer创建一个kfifo

struct kfifo *kfifo_init (unsigned char *buffer, unsigned int size,

gfp_ t gfp_ mask, spinlock_t *lock);

//给定size分配buffer和kfifo

struct kfifo *kfifo_alloc (unsigned int size, gfp_t gfp_mask,

spinlock_ t *lock);

//释放kfifo空间

void kfifo_free (struct kfifo *fifo)

//向kfifo中添加数据

unsigned int kfifo_put (struct kfifo *fifo,

const unsigned char *buffer, unsigned int len)

//从kfifo中取数据

unsigned int kfifo_put(struct kfifo *fifo,

const unsigned char *buffer, unsigned int len)

//获取kfifo中有数据的buffer大小

unsigned int kfifo_len(struct kfifo *fifo)

定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:

struct kfifo *kfifo_init (unsigned char *buffer, unsigned int size,

gfp_t gfp_ mask, spinlock_t *lock)

{

struct kfifo *fifo;

/* size must be a power of 2 */

BUG_ON( !is_power_of_2(size));

fifo = kmalloc (sizeof(struct kfifo), gfp_mask);

if (!fifo)

return ERR_PTR (-ENOMEM);

fifo-> buffer = buffer;

fifo->size = size;

fifo->in = fifo->out = 0;

fifo->lock = lock;

return fifo;

}

struct kfifo *kfifo_alloc (unsigned int size, gfp_t gfp_mask, spinlock_t *lock)

{

unsigned char *buffer;

struct kfifo *ret;

if (!is_power_of_2(size)) {

BUG_ON( size > 0x80000000);

size = roundup_ pow_of_two(size);

}

buffer = kmalloc (size, gfp_mask);

if (!buffer)

return ERR_PTR(-ENOMEM);

ret = kfifo_init (buffer, size, gfp_mask, lock);

if (IS_ERR(ret))

kfree(buffer);

return ret;

}

在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

static inline unsigned int kfifo_put(struct kfifo *fifo,

const unsigned char *buffer, unsigned int len)

{

unsigned long flags;

unsigned int ret;

spin_lock_irqsave (fifo->lock, flags);

ret = __kfifo_put (fifo, buffer, len);

spin_unlock_irqrestore (fifo->lock, flags);

return ret;

}

static inline unsigned int kfifo_get (struct kfifo *fifo,

unsigned char *buffer, unsigned int len)

{

unsigned long flags;

unsigned int ret;

spin_lock_irqsave (fifo->lock, flags);

ret = __ kfifo_get(fifo, buffer, len);

//当fifo-> in == fifo->out时,buufer为空

if (fifo- >in == fifo->out)

fifo->in = fifo-> out = 0;

spin_unlock_irqrestore (fifo->lock, flags);

return ret;

}

unsigned int __ kfifo_put(struct kfifo *fifo,

const unsigned char *buffer, unsigned int len)

{

unsigned int l;

//buffer中空的长度

len = min(len, fifo->size - fifo->in + fifo->out);

/*

* Ensure that we sample the fifo->out index -before- we

* start putting bytes into the kfifo.

*/

smp_mb();

/* first put the data starting from fifo->in to buffer end */

l = min (len, fifo->size - (fifo->in & (fifo->size - 1)));

memcpy (fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);

/* then put the rest (if any) at the beginning of the buffer */

memcpy(fifo->buffer, buffer + l, len - l);

/*

* Ensure that we add the bytes to the kfifo -before-

* we update the fifo->in index.

*/

smp_wmb();

fifo->in += len; //每次累加,到达最大值后溢出,自动转为0

return len;

}

unsigned int __kfifo_get(struct kfifo *fifo,

unsigned char *buffer, unsigned int len)

{

unsigned int l;

//有数据的缓冲区的长度

len = min(len, fifo->in - fifo->out);

/*

* Ensure that we sample the fifo->in index -before- we

* start removing bytes from the kfifo.

*/

smp_rmb();

/* first get the data from fifo->out until the end of the buffer */

l = min (len, fifo->size - (fifo->out & (fifo->size - 1)));

memcpy (buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);

/* then get the rest (if any) from the beginning of the buffer */

memcpy(buffer + l, fifo->buffer, len - l);

/*

* Ensure that we remove the bytes from the kfifo -before-

* we update the fifo->out index.

*/

smp_mb();

fifo->out += len; //每次累加,到达最大值后溢出,自动转为0

return len;

}

put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,

linux内核数据结构之kfifo

(2)put一个buffer后

linux内核数据结构之kfifo

(3)get一个buffer后

linux内核数据结构之kfifo

(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

linux内核数据结构之kfifo

3、测试程序

仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

/**@brief 仿照linux kfifo写的ring buffer

*@atuher Anker date:2013-12-18

* ring_buffer.h

* */

#ifndef KFIFO_HEADER_H

#define KFIFO_HEADER_H

#include <inttypes.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <assert.h>

//判断x是否是2的次方

#define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))

//取a和b中最小值

#define min(a, b) (((a) < (b)) ? (a) : (b))

struct ring_buffer

{

void *buffer; //缓冲区

uint32_t size; //大小

uint32_t in; //入口位置

uint32_t out; //出口位置

pthread_mutex_t *f_lock; //互斥锁

};

//初始化缓冲区

struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)

{

assert(buffer);

struct ring_buffer *ring_buf = NULL;

if (!is_power_of_2(size))

{

fprintf(stderr,"size must be power of 2.\n");

return ring_buf;

}

ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));

if (!ring_buf)

{

fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",

errno, strerror(errno));

return ring_buf;

}

memset(ring_buf, 0, sizeof(struct ring_buffer));

ring_buf->buffer = buffer;

ring_buf->size = size;

ring_buf->in = 0;

ring_buf->out = 0;

ring_buf->f_lock = f_lock;

return ring_buf;

}

//释放缓冲区

void ring_buffer_free (struct ring_buffer *ring_buf)

{

if (ring_buf)

{

if (ring_buf->buffer)

{

free(ring_buf->buffer);

ring_buf->buffer = NULL;

}

free(ring_buf);

ring_buf = NULL;

}

}

//缓冲区的长度

uint32_t __ring_buffer_len (const struct ring_ buffer *ring _buf)

{

return (ring_buf->in - ring_buf->out);

}

//从缓冲区中取数据

uint32_t __ring_buffer_get(struct ring_buffer *ring _buf , void * buffer, uint32_t size)

{

assert (ring_buf || buffer);

uint32_t len = 0;

size = min (size, ring_buf->in - ring_buf->out);

/* first get the data from fifo-> out until the end of the buffer */

len = min(size, ring_buf->size - (ring_buf-> out & (ring_buf-> size - 1)));

memcpy(buffer, ring_buf-> buffer + (ring_buf->out & (ring_buf->size - 1)), len);

/* then get the rest (if any) from the beginning of the buffer */

memcpy(buffer + len, ring_buf->buffer, size - len);

ring_buf-> out += size;

return size;

}

//向缓冲区中存放数据

uint32_t __ring_buffer_put (struct ring_buffer *ring_ buf , void *buffer, uint32_t size)

{

assert(ring_buf || buffer);

uint32_t len = 0;

size = min(size, ring_buf->size - ring_buf->in + ring _ buf->out);

/* first put the data starting from fifo->in to buffer end */

len = min (size, ring_buf->size - (ring_buf->in & ( ring _ buf-> size - 1)));

memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf-> size - 1)), buffer, len);

/* then put the rest (if any) at the beginning of the buffer */

memcpy(ring_buf->buffer, buffer + len, size - len);

ring _buf->in += size;

return size;

}

uint32_t ring_buffer_len (const struct ring_buffer * ring_ buf)

{

uint32_t len = 0;

pthread_mutex_lock (ring_buf->f_lock);

len = __ ring_buffer_len (ring_buf);

pthread_ mutex_unlock (ring_buf->f_lock);

return len;

}

uint32_t ring_buffer_get (struct ring_buffer *ring_ buf , void *buffer, uint32_t size)

{

uint32_t ret;

pthread_mutex_lock (ring_buf->f_lock);

ret = __ring_buffer_get (ring_buf, buffer, size);

//buffer中没有数据

if (ring_buf->in == ring_buf->out)

ring_ buf-> in = ring_buf->out = 0;

pthread_ mutex_unlock(ring_buf->f_lock);

return ret;

}

uint32_t ring_buffer_put (struct ring_buffer *ring_ buf , void *buffer, uint32_t size)

{

uint32_t ret;

pthread_mutex_lock (ring_buf->f_lock);

ret = __ ring_buffer_put (ring_buf, buffer, size);

pthread_mutex_unlock (ring_buf->f_lock);

return ret;

}

#endif

采用多线程模拟生产者和消费者编写测试程序,如下所示:

/**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。

* 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。

*@atuher Anker date:2013-12-18

* */

#include "ring_buffer.h"

#include <pthread.h>

#include <time.h>

#define BUFFER_SIZE 1024 * 1024

typedef struct student_info

{

uint64_t stu_id;

uint32_t age;

uint32_t score;

}student_info;

void print_student_info (const student_ info *stu_ info )

{

assert(stu_info);

printf ("id:%lu\t",stu_info->stu_id);

printf ("age:%u\t",stu_info->age);

printf ("score:%u\n",stu_info->score);

}

student_info * get_student_info (time_t timer)

{

student_info *stu_info = (student_info *)malloc ( sizeof (student_info));

if (!stu_info)

{

fprintf( stderr, "Failed to malloc memory.\n");

return NULL;

}

srand(timer);

stu_info-> stu_id = 10000 + rand() % 9999;

stu_info-> age = rand() % 30;

stu_info-> score = rand() % 101;

print_ student_ info(stu_info);

return stu _info;

}

void * consumer_proc(void *arg)

{

struct ring_ buffer *ring_ buf = (struct ring_ buffer *) arg;

student_ info stu_info;

while(1)

{

sleep(2);

printf ("------------------------------------------\n" ) ;

printf ("get a student info from ring buffer.\n");

ring _buffer_ get (ring_buf, (void *)&stu_info, sizeof( student_info));

printf ("ring buffer length: %u\n", ring_buffer_len ( ring _buf));

print_ student_info(&stu_info);

printf ("------------------------------------------\n" );

}

return (void *)ring_buf;

}

void * producer_proc (void *arg)

{

time_t cur_time;

struct ring_buffer *ring_buf = (struct ring_buffer *) arg;

while(1)

{

time (&cur_time);

srand (cur_time);

int seed = rand() % 11111;

printf ("******************************************\ n" );

student_info *stu_info = get_student_info(cur_time + seed );

printf("put a student info to ring buffer.\n");

ring_ buffer_ put (ring_buf, (void *)stu_info, sizeof ( student _ info));

printf("ring buffer length: %u\n", ring_ buffer_ len (ring_ buf));

printf ("******************************************\n " );

sleep(1);

}

return (void *)ring_buf;

}

int consumer_thread (void *arg)

{

int err;

pthread_t tid;

err = pthread_create (&tid, NULL, consumer_proc, arg);

if (err != 0)

{

fprintf (stderr, "Failed to create consumer thread.errno: %u, reason:%s\n",

errno, strerror(errno));

return -1;

}

return tid;

}

int producer_thread (void *arg)

{

int err;

pthread_t tid;

err = pthread_create (&tid, NULL, producer_proc, arg);

if (err != 0)

{

fprintf (stderr, "Failed to create consumer thread.errno: %u, reason:%s\n",

errno, strerror (errno));

return -1;

}

return tid;

}

int main()

{

void * buffer = NULL;

uint32_t size = 0;

struct ring_buffer * ring_buf = NULL;

pthread_t consume_pid, produce_pid;

pthread_ mutex_t *f_lock = (pthread_mutex_t *)malloc (sizeof (pthread_mutex_t));

if (pthread_mutex_init(f_lock, NULL) != 0)

{

fprintf (stderr, "Failed init mutex, errno: %u,reason :%s\ n",

errno, strerror(errno));

return -1;

}

buffer = (void *) malloc(BUFFER_SIZE);

if (!buffer)

{

fprintf (stderr, "Failed to malloc memory.\n");

return -1;

}

size = BUFFER_SIZE;

ring_buf = ring_buffer_init (buffer, size, f_lock);

if (!ring_buf)

{

fprintf (stderr, "Failed to init ring buffer.\n");

return -1;

}

#if 0

student_info *stu_info = get_student_info (638946124);

ring_ buffer_ put (ring_buf, (void *)stu_ info, sizeof (student_ info));

stu_info = get_student_info (976686464);

ring _buffer_ put (ring_buf, (void *)stu_info, sizeof (student_info));

ring_ buffer_get (ring_buf, (void *)stu_info, sizeof (student_ info));

print_ student_info(stu_info);

#endif

printf ("multi thread test.......\n");

produce_ pid = producer_thread((void*)ring_buf);

consume_ pid = consumer_thread((void*)ring_buf);

pthread_ join(produce_pid, NULL);

pthread_ join(consume_pid, NULL);

ring_ buffer_ free(ring_buf);

free (f_lock);

return 0;

}

测试结果如下所示:

linux内核数据结构之kfifo


以上所述就是小编给大家介绍的《linux内核数据结构之kfifo》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

网络空间导论

网络空间导论

李良荣、方师师 / 复旦大学出版社 / 2018-6-1 / 38

在互联网蓬勃发展的今天,新闻传播学科该往何处去?在长达半个多世纪的深入研究后,李良荣教授及其团队给出了答案:从“小新闻”走向“大传播”,并撰写了这本开创性的教材:《网络空间导论》。 在本书中,互联网被定义为“空间”——持续演进的数字化现实。为了深刻把握网络空间的内涵,本书提供了六个维度的观察:技术应用、组织架构、政治经济、媒介文化、网络素养、安全治理,并以大胆且富有建设性的观点重新定义了新闻......一起来看看 《网络空间导论》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具