OpenCV+TensorFlow 人工智能图像处理 (2)

栏目: 编程工具 · 发布时间: 6年前

内容简介:[[1, 0, 100], [0, 1, 200]]转变为2个矩阵:[[1, 0], [0, 1]] 和 [[100], [200]]

1. 图片缩放

# 1. 加载图片
# 2. 获取图片信息(宽度,高度)
# 3. 调用OpenCV的resize方法,进行图片的缩放
# 4. 检查最终的结果
import cv2
img = cv2.imread('images/image0.jpg', 1)
imgInfo = img.shape
print (imgInfo)
height = imgInfo[0]
width = imgInfo[1]
mode = imgInfo[2] # 颜色的储存方式,由3种颜色(bgr)组成
# 放大, 缩小, 等比缩放 非等比缩放
dstHeight = int(height*0.5) # 目标高度
dstWidth = int(width*0.5)
# 四种resize: 最近邻域插值 双线性插值 像素关系重采样 立方插值
dst = cv2.resize(img, (dstWidth, dstHeight))
cv2.imshow("image", dst)
cv2.waitKey(0)
(547, 730, 3)

-1

2. 最近邻域插值、双线性插值原理

  • 最近邻域插值
    原图像:10*20
    目标图像: 5*10
    目标图像的像素来源于原图像
    举例:
    目标图像(1, 2)来源于原图像(2, 4)
    如何计算:
    newX = 原图x*(原图像的行/目标图像的行)
    newY = 原图y*(原图像的列/目标图像的列)
    比如目标图像的第一列的第一个点,来源于原图像的第一列的二个点(1* (10/5) = 2)
    目标图像(2, 3)点,来源于(4, 6)
  • 双线性插值

    A1 = 20%上 + 80%下 A2

    B1 = 30%上 + 70%下 B2

    OpenCV+TensorFlow 人工智能图像处理 (2)
# 最近邻域插值
# 1. 获取图片信息
# 2. 创建一个空白模板,与预期目标大小一样
# 3. 计算对应的像素
import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dstHeight = int(height/2)
dstWidth = int(width/2)
dstImage = np.zeros((dstHeight, dstWidth, 3), np.uint8) # 0-255
for i in range(0, dstHeight): # 行
    for j in range(0, dstWidth): # 列
        iNew = int(i*(height*1.0/dstHeight))
        jNew = int(j*(width*1.0/dstWidth))
        dstImage[i, j] = img[iNew, jNew]

cv2.imshow('dstImage', dstImage)
cv2.waitKey(0)

2. 图片剪切

# 剪切(100, 100) -> (200, 300)
import cv2
img = cv2.imread('images/image0.jpg', 1)
dst = img[100:200, 100:300]
# 将蓝红通道设为0
dst[:, :, [0, 2]] = 0
cv2.imshow("image", dst)
cv2.waitKey(0)
-1

3. 图片移位

import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
height, width = imgInfo[0], imgInfo[1]
# 进行矩阵的移位
matShift = np.float32([[1, 0, 100], [0, 1, 200]]) # 2*3
dst = cv2.warpAffine(img, matShift, (height, width)) # 矩阵映射,原图, 移位矩阵, 图片的高度和宽度
cv2.imshow('dst', dst)
cv2.waitKey(0)

[[1, 0, 100], [0, 1, 200]]

转变为2个矩阵:

[[1, 0], [0, 1]] 和 [[100], [200]]

分别对应A和B矩阵,原图像为C[x, y]

A * C + B = [[1 x+0 y], [0 x+1 y]] + [[100], [200]]

# 算法原理实现图片移位
import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
dst = np.zeros(img.shape, np.uint8)
height, width = imgInfo[0], imgInfo[1]
for i in range(0, height):
    for j in range(0, width-100):
        dst[i, j+100] = img[i, j]
cv2.imshow('dst', dst)
cv2.waitKey(0)
-1

4. 图片镜像

# 1. 创建一个足够大的画板
# 2. 将一副图像从前向后,从后向前绘制
# 3. 绘制中心分割线
import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
imgInfo = img.shape
height, width, deep = imgInfo[0], imgInfo[1], imgInfo[2]
newImgInfo = (height*2, width, deep)
dst = np.zeros(newImgInfo, np.uint8)
for i in range(height):
    for j in range(width):
        dst[i, j] = img[i, j]
        # 绘制镜像部分, x轴不变, y = 2*h - y - 1
        dst[height*2-i-1, j] = img[i, j]
for i in range(width):
    dst[height, i] = (0, 0, 255)
cv2.imshow('image', dst)
cv2.waitKey(0)
-1

5. 图片缩放

# 缩放1倍
import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
imgInfo = img.shape
height, width = imgInfo[0], imgInfo[1]
matScale = np.float32([[0.5, 0, 0], [0, 0.5, 0]])
dst = cv2.warpAffine(img, matScale, (int(width/2), int(height/2)))
cv2.imshow('dst', dst)
cv2.waitKey(0)
-1

6. 仿射变换

import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
imgInfo = img.shape
height, width = imgInfo[0], imgInfo[1]
# 3点确定一个平面,分别是左上角, 左下角, 右上角
matSrc = np.float32([[0, 0], [0, height], [width, 0]])
matDst = np.float32([[50, 50], [300, height-200], [width-300, 100]])
# 组合
matAffine = cv2.getAffineTransform(matSrc, matDst) # 获取矩阵组合, 1: 描述原矩阵的三点, 2: 目标矩阵的三点
dst = cv2.warpAffine(img, matAffine, (width, height))
cv2.imshow('image', dst)
cv2.waitKey(0)

7. 旋转图片

import cv2
import numpy as np
img = cv2.imread('images/image0.jpg', 1)
imgInfo = img.shape
height, width = imgInfo[0], imgInfo[1]
# 定义旋转矩阵
matRotate = cv2.getRotationMatrix2D((height*0.5, width*0.5), 45, 1) # 得到旋转矩阵, 1 旋转中心店, 2 旋转角度, 3 缩放系数
dst = cv2.warpAffine(img, matRotate, (width, height))
cv2.imshow('image', dst)
cv2.waitKey(0)
-1

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

第二曲线:跨越“S型曲线”的二次增长

第二曲线:跨越“S型曲线”的二次增长

[英]查尔斯·汉迪(Charles Handy) / 苗青 / 机械工业出版社 / 2017-6 / 49.00

S型曲线是每个组织和企业在预测未来时一定会参考的工具,一切事物的发展都逃不开S型曲线(“第一曲线”)。 然而,从公司组织、企业治理、市场的变化,到个人职业发展、社会人际关系以及未来的教育与社会价值,多维度地探讨这个世界需要重新以不同的角度来思考问题,不能够总是停留在“第一曲线”的世界。 如果组织和企业能在第一曲线到达巅峰之前,找到带领企业二次腾飞的“第二曲线”,并且第二曲线必须在第一曲......一起来看看 《第二曲线:跨越“S型曲线”的二次增长》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具