尺度不变提升人群计数性能

栏目: 编程工具 · 发布时间: 6年前

内容简介:(欢迎关注“我爱计算机视觉”公众号,一个有价值有深度的公众号~)人群计数是通过计算机视觉计算人群数量,在公共安全和城市规划中有非常重要的应用。本文通过改进网络的尺度不变性,显著提高了人群计数算法性能。

(欢迎关注“我爱计算机视觉”公众号,一个有价值有深度的公众号~)

人群计数是通过计算机视觉计算人群数量,在公共安全和城市规划中有非常重要的应用。本文通过改进网络的尺度不变性,显著提高了人群计数算法性能。

尺度不变提升人群计数性能

该文来自昨天Arxiv新上论文《Stacked Pooling: Improving Crowd Counting by Boosting Scale Invariance》,作者信息:

尺度不变提升人群计数性能

在计算机视觉中尺度不变是经常被涉及的话题,与其相关最著名的算法就是SIFT(尺度不变特征变换)了。本文作者通过观察发现,在人群计数这一领域,图像不同区域通过resize到相同大小,在尺度上具有高度的视觉相似性。请看下面这幅图:

尺度不变提升人群计数性能

来自同一幅图像和不同的图像经过resize,子图内的人物大小、人群密度、层叠关系视觉上很相似。

由于神经网络中池化层直接关系到网络的尺度变化,所以本文作者希望改进池化层,提高人群计数的算法性能。

作者在vanilla pooling基础上发明了两种池化层变种,multi-kernel pooling 和 stacked pooling。

multi-kernel pooling图示:

尺度不变提升人群计数性能 stacked pooling图示:

尺度不变提升人群计数性能

为验证所提的池化层的有效性,作者们使用VGG-13网络的各种变形来进行人群计数。网络的变化包括卷积核大小,网络宽度、深度等,如下图所示:

尺度不变提升人群计数性能

作者在ShanghaiTech-A数据集上验证multi-kernel pooling在高密度组比vanilla pooling要好,而在整个ShanghaiTech-B数据集上multi-kernel pooling都是更好的。

尺度不变提升人群计数性能

使用stacked pooling方法的各种网络变种都在ShanghaiTech数据集上比vanilla pooling好,且具有明显的性能提升。

尺度不变提升人群计数性能

在WorldExpo’10数据集上大部分场景也取得了更好的效果。

尺度不变提升人群计数性能

代码主页:

https://github.com/siyuhuang/crowdcount-stackpool

点击阅读原文可以在www.52cv.net查看本文。

更多精彩推荐:

NVIDIA ECCV18论文:超像素采样网络助力语义分割与光流估计(代码将开源)

OpenCV深度学习文本检测示例程序(EAST text detector)

MaskFusion:惊艳的结合实例感知、语义分割、动态追踪的SLAM系统

(欢迎关注“我爱计算机视觉”公众号,一个有价值有深度的公众号~)

尺度不变提升人群计数性能

【本文由“我爱计算机视觉”发布,2018年08月24日】


以上所述就是小编给大家介绍的《尺度不变提升人群计数性能》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python学习手册

Python学习手册

Mark Lutz / 侯靖 / 机械工业出版社 / 2009-8 / 89.00元

《Python学习手册(第3版)》讲述了:Python可移植、功能强大、易于使用,是编写独立应用程序和脚本应用程序的理想选择。无论你是刚接触编程或者刚接触Python,通过学习《Python学习手册(第3版)》,你可以迅速高效地精通核心Python语言基础。读完《Python学习手册(第3版)》,你会对这门语言有足够的了解,从而可以在你所从事的任何应用领域中使用它。 《Python学习手册(......一起来看看 《Python学习手册》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

html转js在线工具
html转js在线工具

html转js在线工具