内容简介:默认情况下,在OpenStack上私有网络上开启的虚拟机接口必须配置IP,否则网络包无法到达该接口。而之前的文章<<上篇文章的示例网络拓扑如下:
默认情况下,在OpenStack上私有网络上开启的虚拟机接口必须配置IP,否则网络包无法到达该接口。而之前的文章<< OpenStack私有网络旁路部署虚拟防火墙 >>最后提到某些厂商的VFW只支持二层透明接入,那么我们怎样在OpenStack环境上跑通这样的VFW实例呢?本文来通过实例说明。
上篇文章的示例网络拓扑如下:
VFW虚拟机接口与vRouter之间依赖IP协议转发数据包。由于VFW需要二层接入,因而不能够在防火墙接口上配置IP,我们可以在VFW前添加一个伪造的vRouter(后文称为Fake vRouter),将IP配置在该vRouter上,vRouter与VFW之间实现二层转发,网络拓扑变为:
原来拓扑对应的实际结构如图:
新拓扑对应的实际网络结构如图:
下面我们基于上篇文章的环境继续操作。我的环境为OpenStack ALL IN ONE环境,VFW虚拟机和vRouter都在同一台机器上。
我们首先给VFW虚拟机添加一个接口,原接口作入接口,新接口作为出接口。
设置OpenStack相应的环境变量后,查看 vfw
网络ID:
[root@aio ~(keystone_admin)]# neutron net-list neutron CLI is deprecated and will be removed in the future. Use openstack CLI instead. +--------------------------------------+---------+----------------------------------+-------------------------------------------------------+ | id | name | tenant_id | subnets | +--------------------------------------+---------+----------------------------------+-------------------------------------------------------+ | 16b1e02f-216f-4e38-859c-a4cb87239106 | private | 045e1b8ee842483db6819f6ff1c966f7 | 17858aee-b868-4719-bf79-f225f2120209 10.0.0.0/24 | | 6b930b9b-3a93-4300-b4d9-6312ed36432c | public | 4d885395e1b04f97a61f0288ef41e307 | 5cf81ad0-d266-4b42-9a83-2b9885f32ece 172.24.4.0/24 | | a18c3985-535e-4d18-a49e-900912de5086 | vfw | 4d885395e1b04f97a61f0288ef41e307 | fbcf8e7a-89c8-4c74-a6ef-5178f8ab0ebd 192.168.100.0/24 | | c1ed4eb2-c45b-44e8-ac26-efd592c11860 | demo | 4d885395e1b04f97a61f0288ef41e307 | 8c09028b-e730-457b-917b-5102cefcbe6f 10.10.10.0/24 | +--------------------------------------+---------+----------------------------------+-------------------------------------------------------+
在 vfw
子网中创建一个新接口:
[root@aio ~(keystone_admin)]# neutron port-create a18c3985-535e-4d18-a49e-900912de5086 neutron CLI is deprecated and will be removed in the future. Use openstack CLI instead. Created a new port: +-----------------------+--------------------------------------------------------------------------------------+ | Field | Value | +-----------------------+--------------------------------------------------------------------------------------+ | admin_state_up | True | | allowed_address_pairs | | | binding:host_id | | | binding:profile | {} | | binding:vif_details | {} | | binding:vif_type | unbound | | binding:vnic_type | normal | | created_at | 2018-08-08T09:40:21Z | | description | | | device_id | | | device_owner | | | extra_dhcp_opts | | | fixed_ips | {"subnet_id": "fbcf8e7a-89c8-4c74-a6ef-5178f8ab0ebd", "ip_address": "192.168.100.8"} | | id | f97f143d-9121-4a52-a898-850633cac943 | | mac_address | fa:16:3e:ee:d0:27 | | name | | | network_id | a18c3985-535e-4d18-a49e-900912de5086 | | port_security_enabled | True | | project_id | 4d885395e1b04f97a61f0288ef41e307 | | revision_number | 3 | | security_groups | 15915a82-919a-41b4-96d3-3cac6652079d | | status | DOWN | | tags | | | tenant_id | 4d885395e1b04f97a61f0288ef41e307 | | updated_at | 2018-08-08T09:40:22Z | +-----------------------+--------------------------------------------------------------------------------------+
将这个接口添加到虚拟机VFW上:
[root@aio ~(keystone_admin)]# nova interface-attach --port-id f97f143d-9121-4a52-a898-850633cac943 vfw [root@aio ~(keystone_admin)]# nova list +--------------------------------------+------+--------+------------+-------------+----------------------------------+ | ID | Name | Status | Task State | Power State | Networks | +--------------------------------------+------+--------+------------+-------------+----------------------------------+ | c7da7c30-fd95-4cb2-b412-45c911e320e5 | app1 | ACTIVE | - | Running | demo=10.10.10.9, 172.24.4.4 | | 2e0deaeb-d140-4d52-8289-efdc05267b52 | vfw | ACTIVE | - | Running | vfw=192.168.100.6, 192.168.100.8 | +--------------------------------------+------+--------+------------+-------------+----------------------------------+
登录到VFW虚拟机上,将虚拟机的两个网络接口串接起来模拟二层防火墙:
brctl addbr br0 brctl addif eth0 brctl addif eth1 brctl setageing br0 0 ip link set up dev eth0 ip link set up dev eth1
查看串接后的网桥:
[root@vfw ~]# brctl show bridge name bridge id STP enabled interfaces br0 8000.fa163e73c1de no eth0 eth1
接着回到OpenStack宿主机来操作, 找到VFW虚拟机的接口ID:
[root@aio ~(keystone_admin)]# neutron port-list |grep 192.168.100.6 neutron CLI is deprecated and will be removed in the future. Use openstack CLI instead. | 2cdddce0-6533-4d2d-9214-1214e0b2375b | | 4d885395e1b04f97a61f0288ef41e307 | fa:16:3e:73:c1:de | {"subnet_id": "fbcf8e7a-89c8-4c74-a6ef-5178f8ab0ebd", "ip_address": "192.168.100.6"} |
查看VFW虚拟机接口在 br-int
上的VLAN tag ID, 可以看到VLAN TAG为 4
:
[root@aio ~]# ovs-vsctl show aef92bf7-dcdc-4b6f-9add-d30f929940ff ... Bridge br-int ... Port "qvo2cdddce0-65" tag: 4 Interface "qvo2cdddce0-65" ... ovs_version: "2.9.0"
在 br-int
上创建一个虚拟接口 vfw
, 并将其VLAN TAG设置为 4
:
ovs-vsctl add-port br-int vfw -- set interface vfw type=internal ovs-vsctl set port vfw tag=4
创建连接VFW虚拟机出入接口的网桥:
ovs-vsctl add-br vfw-in ovs-vsctl add-br vfw-out
创建Fake vRouter的net namespace:
ip netns add qrouter-vfw
将 br-int
上的 vfw
, vfw-in
, vfw-out
三个接口都放入 qrouter-vfw
中:
ip link set dev vfw netns qrouter-vfw ip link set dev vfw-in netns qrouter-vfw ip link set dev vfw-out netns qrouter-vfw
再将VFW虚拟机的两个接口移到新建的两个网桥上:
brctl delif qbr2cdddce0-65 tap2cdddce0-65 ovs-vsctl add-port vfw-in tap2cdddce0-65 brctl delif qbrf97f143d-91 tapf97f143d-91 ovs-vsctl add-port vfw-out tapf97f143d-91
接下来,我们进入到 qrouter-vfw
中:
ip netns exec qrouter-vfw bash
此时的网络接口情况如下:
[root@aio ~(keystone_admin)]# ip a 1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 26: vfw: <BROADCAST,MULTICAST> mtu 1450 qdisc noop state DOWN group default qlen 1000 link/ether a2:e9:b4:b5:63:a0 brd ff:ff:ff:ff:ff:ff 27: vfw-in: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether 32:0f:41:6a:6e:43 brd ff:ff:ff:ff:ff:ff 28: vfw-out: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether 3e:3c:59:c0:80:47 brd ff:ff:ff:ff:ff:ff
我们将原来VFW的IP: 192.168.100.6
配置在 br-int
上的 vfw
接口上,也就是Fake vRouter的单臂接口:
ip addr add 192.168.100.6/24 dev vfw
给 vfw-in
接口配置一个路由IP, 如: 100.100.100.100/24
:
ip addr add 100.100.100.100/24 dev vfw-in
给 vfw-out
接口配置同一个二层网络的路由IP, 如: 100.100.100.101/24
:
ip addr add 100.100.100.101/24 dev vfw-out
启动相应接口:
ip link set up dev vfw ip link set up dev vfw-in ip link set up dev vfw-out
关闭相应接口的 rp_filter
选项:
sysctl -w net.ipv4.conf.vfw.rp_filter=0 sysctl -w net.ipv4.conf.vfw-in.rp_filter=0 sysctl -w net.ipv4.conf.vfw-out.rp_filter=0 sysctl -w net.ipv4.conf.all.rp_filter=0
我们需要将 vfw
接口进入的数据包,由接口 vfw-in
转发至VFW虚拟机,数据包直接通过VFW虚拟机内部二层转发到 vfw-out
接口处,再由 vfw
接口回注到原来路径中。
首先添加一个路由表用于从 vfw
接口转发到 vfw-in
接口:
ip route add default via 100.100.100.101 dev vfw-in table 100
添加另一个路由表用于从 vfw-out
接口转发到 vfw
接口:
ip route add default via 192.168.100.1 dev vfw table 101
配置相应的路由规则:
[root@aio ~(keystone_admin)]# ip rule add iif vfw lookup 100 [root@aio ~(keystone_admin)]# ip rule add iif vfw-out lookup 101 [root@aio ~(keystone_admin)]# ip rule 0: from all lookup local 32764: from all iif vfw-out lookup 101 32765: from all iif vfw lookup 100 32766: from all lookup main 32767: from all lookup default
至此时,我们所有的配置就都完成了。
我们从外向内访问, 访问成功:
[root@aio ~]# ping 172.24.4.4 -c 2 PING 172.24.4.4 (172.24.4.4) 56(84) bytes of data. 64 bytes from 172.24.4.4: icmp_seq=1 ttl=60 time=3.07 ms 64 bytes from 172.24.4.4: icmp_seq=2 ttl=60 time=2.03 ms --- 172.24.4.4 ping statistics --- 2 packets transmitted, 2 received, 0% packet loss, time 1001ms rtt min/avg/max/mdev = 2.033/2.555/3.077/0.522 ms
在VFW虚拟机上抓包看结果正常:
[root@vfw ~]# tcpdump -ieth0 -nn -e icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes 11:15:49.837903 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 172.24.4.1 > 10.10.10.9: ICMP echo request, id 19718, seq 1, length 64 11:15:49.839749 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 10.10.10.9 > 172.24.4.1: ICMP echo reply, id 19718, seq 1, length 64 11:15:50.838751 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 172.24.4.1 > 10.10.10.9: ICMP echo request, id 19718, seq 2, length 64 11:15:50.840022 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 10.10.10.9 > 172.24.4.1: ICMP echo reply, id 19718, seq 2, length 64 ^C 4 packets captured 4 packets received by filter 0 packets dropped by kernel
再从app虚拟机访问外部,访问也正常:
$ ping 114.114.114.114 -c 2 PING 114.114.114.114 (114.114.114.114): 56 data bytes 64 bytes from 114.114.114.114: seq=0 ttl=58 time=27.473 ms 64 bytes from 114.114.114.114: seq=1 ttl=82 time=27.177 ms --- 114.114.114.114 ping statistics --- 2 packets transmitted, 2 packets received, 0% packet loss round-trip min/avg/max = 27.177/27.325/27.473 ms
从VFW虚拟机上抓包结果正常:
[root@vfw ~]# tcpdump -ieth0 -nn -e icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes 11:17:33.030527 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 10.10.10.9 > 114.114.114.114: ICMP echo request, id 39425, seq 0, length 64 11:17:33.055787 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 114.114.114.114 > 10.10.10.9: ICMP echo reply, id 39425, seq 0, length 64 11:17:34.031610 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 10.10.10.9 > 114.114.114.114: ICMP echo request, id 39425, seq 1, length 64 11:17:34.056536 32:0f:41:6a:6e:43 > 3e:3c:59:c0:80:47, ethertype IPv4 (0x0800), length 98: 114.114.114.114 > 10.10.10.9: ICMP echo reply, id 39425, seq 1, length 64 ^C 4 packets captured 4 packets received by filter 0 packets dropped by kernel
这种方法是比较Tricky的实现,只用于POC验证阶段。如果用于实际业务场景,需要修改 Neutron
代码或者独立实现AGENT完成相应操作。更为优雅的方式,则可以基于 networking-sfc
实现二层接入,后续再写文章来说明。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 大二层组网技术,你了解几个?
- 数据中心大二层网络技术-VXLAN
- 虚拟化数据中心的大二层技术
- 为什么 Vitalik 看好区块链二层扩展方案 Rollup ?
- 路印生成二层(Layer-2)账户密钥的新方法
- 二层网络上的以太坊智能合约: Optimistic Rollup
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
WWW信息体系结构(影印版第2版)
Louis Rosenfeld / 清华大学出版社 / 2003-6 / 49.8
如今的网站和内联网已经变得比以前越来越大,越来越有价值,而且越来越复杂,同时其用户也变得更忙,也更加不能容忍错误的发生。数目庞大的信息、快速的变化、新兴的技术和公司策略是设计师、信息体系结构构建师和网站管理员必须面对的事情,而这些已经让某些网让看起来像是个快速增长却规划很差的城市——到处都是路,却无法导航。规划精良的信息体系结构当前正是最关键性的。 本书介绍的是如何使用美学和机械学的理念创建......一起来看看 《WWW信息体系结构(影印版第2版)》 这本书的介绍吧!
HTML 编码/解码
HTML 编码/解码
Base64 编码/解码
Base64 编码/解码