WebGIS 利用 WebGL 在 MapboxGL 上渲染 DEM 三维空间数据

栏目: 编程工具 · 发布时间: 6年前

内容简介:毕业两年,一直在地图相关的公司工作,虽然不是 GIS 出身,但是也对地图有些耳濡目染;最近在看 WebGl 的东西,就拿 MapboxGL 做了一个关于 WebGL 的三维数据渲染的 DEMO 练手。大体就是先做 WebGl 的 Shader 代码放进 Painter(WebGL 的 Context 就在这个对象里面) 里面,然后通过 Source 层去加载处理需要的数据(包括矢量和栅格数据),把数据通过 Tile 对象传进 Render 里面,去做一些 WebGL 的数据处理和渲染,然后扔进 Tile

毕业两年,一直在地图相关的公司工作,虽然不是 GIS 出身,但是也对地图有些耳濡目染;最近在看 WebGl 的东西,就拿 MapboxGL 做了一个关于 WebGL 的三维数据渲染的 DEMO 练手。

首先大致看了一下 MapboxGL 的 GLGS 到图层的一个结构:

WebGIS 利用 WebGL 在 MapboxGL 上渲染 DEM 三维空间数据

大体就是先做 WebGl 的 Shader 代码放进 Painter(WebGL 的 Context 就在这个对象里面) 里面,然后通过 Source 层去加载处理需要的数据(包括矢量和栅格数据),把数据通过 Tile 对象传进 Render 里面,去做一些 WebGL 的数据处理和渲染,然后扔进 Tile 里面传入到 Layer 层,最后就是一些样式和事件的管理。

MapboxGL 大体就说这么多,下面就是 WebGL 的三维数据处理和渲染以及添加卫星影像纹理的过程(代码实在太多,只写出部分关键步骤代码):

第一步:拿到需要渲染的数据片(瓦片形式)

// 序列化瓦片地址,将数据瓦片的 xyz 坐标计算出来
let url = normalizeURL(
    tile.coord.url(this.tiles, null, this.scheme),
    this.url,
    this.tileSize
);
...
// 用 MapboxGl 封装的获取二进制数据格式的 Ajax 请求拿到二进制数据
tile.request = ajax.getArrayBuffer(url, done.bind(this));
...
// 将数据进行转码处理成 JS 对象,并传递给 tile
tile.pixelObj = pixelObj;  // 处理好的数据
...
复制代码

第二步:在 Render 里面拿到数据和 Painter,去做数据片的渲染:

const divisions = 257;
let vertexPositionData = new Float32Array(divisions * divisions * 3);
const pixels = pixelObj.pixels[0];

if (coord.vertexPositionData) {
    // 做了缓存优化
    console.log('缓存', 'coord');
    vertexPositionData = coord.vertexPositionData;
} else {
    console.time('vertex');
    // 全数据量
    for (let i = 0; i < divisions; ++i) {
        for (let j = 0; j < divisions; ++j) {
            const bufferLength = (i * divisions + j) * 3;
            let dem = parseInt(pixels[bufferLength / 3]);
            if (!dem || dem === -3) {
                // 对于无效数据给一个默认值(PS: DEM 高程数据质量不高 )
                dem = -1000;
            }

            vertexPositionData[bufferLength] = j * SCALE;
            vertexPositionData[bufferLength + 1] = i * SCALE * 1;
            vertexPositionData[bufferLength + 2] = dem;
        }
    }

    // 计算数据处理的耗时,优化的时候要用
    console.timeEnd('vertex');
    coord.vertexPositionData = vertexPositionData;
}

const indexData = getIndex(divisions);
const FSIZE = vertexPositionData.BYTES_PER_ELEMENT;
const positionBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, vertexPositionData, gl.STATIC_DRAW);
const aPosiLoc = gl.getAttribLocation(gl.program, "a_Position");
gl.vertexAttribPointer(aPosiLoc, 3, gl.FLOAT, false, FSIZE * 3, 0);
gl.enableVertexAttribArray(aPosiLoc);

// 设置索引
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indexData, gl.STATIC_DRAW);

// https://stackoverflow.com/questions/28324162/webgl-element-array-buffers-not-working
gl.getExtension('OES_element_index_uint');
gl.drawElements(gl.TRIANGLES, indexData.length, gl.UNSIGNED_INT, 0);

...
// 生成索引,WebGL 的渲染有两种方式,一种是 drawElements,一种是 drawArray,我们这里采用第一种
function getIndex(divisions) {
    if (drawLerc3D.indexData) {
        return drawLerc3D.indexData;
    }

    console.time('获取索引');
    const indexData = [];

    // 这个是全数据量渲染
    // for (let row = 0; row < divisions - 1; ++row) {
    //     for (let i = 0; i < divisions; ++i) {
    //         const base = row * divisions + i;

    //         if (i < divisions - 1) {
    //             indexData.push(base);
    //             indexData.push(base + 1);
    //             indexData.push(base + divisions);

    //             indexData.push(base + 1);
    //             indexData.push(base + divisions);
    //             indexData.push(base + divisions + 1);
    //         }
    //     }
    // }

    // 这是一半数据(PS: 这是为了优化,牺牲一些精度)
    for (let row = 0; row < divisions - 2; row += 2) {
        for (let i = 0; i < divisions; i += 2) {
            const base = row * divisions + i;

            if (i < divisions - 2) {
                indexData.push(base);
                indexData.push(base + 2);
                indexData.push(base + divisions * 2);

                indexData.push(base + 2);
                indexData.push(base + divisions * 2);
                indexData.push(base + divisions * 2 + 2);
            }
        }
    }
    console.timeEnd('获取索引');

    drawLerc3D.indexData = new Uint32Array(indexData);
    return drawLerc3D.indexData;
}
复制代码

第三步:编写 GLSL,在 GPU 里面处理不同高度对应渲染的不同颜色值

vertex shader
// 视角矩阵
uniform mat4 u_matrix;
// 顶点位置数据
attribute vec3 a_Position;
// 纹理数据,贴图卫星影像
attribute vec2 a_texCoord;
varying vec2 v_texCoord;
// 高程数据
varying float dem;

void main(){
    dem = a_Position.z;
    gl_Position = u_matrix * vec4(a_Position.x, a_Position.y, dem * 32.0, 1.0);
    v_texCoord = a_texCoord;
}
复制代码
fragment shader
// precision lowp float;

// uniform float u_brightness_low;
// uniform float u_brightness_high;

// 颜色
// varying vec3 v_Color;

varying float dem;

// 纹理
uniform sampler2D u_image;
varying vec2 v_texCoord;

// 根据不同高程取不同颜色
vec4 getColor() {
    // 颜色数组
    const int COLORS_SIZE = 11;
    vec3 colors[COLORS_SIZE];

    // 对 dem 进行归一化
    float n_dem = -2.0 * (dem / 6000.0 - 0.5);

    const float MINDEM = -1.0;
    const float MAXDEM = 1.0;
    const float STEP = (MAXDEM - MINDEM) / float(COLORS_SIZE - 1);
    int index = int(ceil((n_dem - MINDEM) / STEP));

    colors[10] = vec3(0.3686274509803922,0.30980392156862746,0.6352941176470588);
    colors[9] = vec3(0.19607843137254902,0.5333333333333333,0.7411764705882353);
    colors[8] = vec3(0.4,                0.7607843137254902,0.6470588235294118);
    colors[7] = vec3(0.6705882352941176,0.8666666666666667,0.6431372549019608);
    colors[6] = vec3(0.9019607843137255,0.9607843137254902,0.596078431372549);
    colors[5] = vec3(1.0,                1.0,              0.7490196078431373);
    colors[4] = vec3(0.996078431372549,0.8784313725490196,0.5450980392156862);
    colors[3] = vec3(0.9921568627450981,0.6823529411764706,0.3803921568627451);
    colors[2] = vec3(0.9568627450980393,0.42745098039215684,0.2627450980392157);
    colors[1] = vec3(0.8352941176470589,0.24313725490196078,0.30980392156862746);
    colors[0] = vec3(0.6196078431372549,0.00392156862745098,0.25882352941176473);

    if(index > 10){
        return vec4(0.3, 0.3, 0.9, 0.5);
    }

    if(index < 0){
        index = 0;
    }

    for (int i = 0; i < COLORS_SIZE; i++) {
        if (i == index) return vec4(colors[i], 1.0);
    }
}

void main(){
    // 用颜色渲染 DEM 数据,和纹理二选一
    gl_FragColor = getColor();
    // 用纹理(卫星影像)渲染效果
    gl_FragColor = texture2D(u_image, v_texCoord / 256.0 / 32.0);
}
复制代码

最后:在 MapboxGL 里面使用我们自己定义的 Source 和 Layer

map.addSource('DEMImgSource', {  //高程数据
    "type": "DEM3D",
    "tiles": [
        'http://xxx.xxx.xxx.xxx/{x}/{y}/{z}',
    ],
    "tileSize": 512,
    // 谷歌瓦片地址,用来渲染纹理贴图
    "rasterUrl": 'http://www.google.cn/maps/vt?lyrs=s@189≷=cn&x={x}&y={y}&z={z}',
    // 高德的
    // "rasterUrl": 'https://webst04.is.autonavi.com/appmaptile?style=6&x={x}&y={y}&z={z}'
});

map.addLayer({ // layer
    'id': 'DEMlayer',
    'type': 'DEM3D',
    'source': 'DEMImgSource'
});
复制代码

因为数据量实在是太大(一般整张3D屏幕渲染需要40张瓦片,每张都有256*256个数据点),一开始没有做优化的时候非常卡,根本无法进行地图拖动和缩放,后来将数据进行缓存,顶点信息进行精简,瓦片大小进行放大(一屏幕只需要20张数据片渲染)得到的效果就很不错了,拖动和缩放基本比较流畅,体验和正常地图差别不大。


以上所述就是小编给大家介绍的《WebGIS 利用 WebGL 在 MapboxGL 上渲染 DEM 三维空间数据》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

APP蓝图

APP蓝图

吕皓月 / 清华大学出版社 / 2015-1-1 / 69.00

移动互联网原型设计,简单来说,就是使用建模软件制作基于手机或者平板电脑的App,HTML 5网站的高保真原型。在7.0 之前的版本中,使用Axure RP进行移动互联网的建模也是可以的。比如,对于桌面的网站模型,制作一个1024像素宽度的页面就可以了;现在针对移动设备,制作320像素宽度的页面就好了。但是在新版本的Axure RP 7.0 中,加入了大量对于移动互联网的支持,如手指滑动,拖动,横屏......一起来看看 《APP蓝图》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换