聊聊 JDK 阻塞队列源码分析

栏目: 编程工具 · 发布时间: 6年前

内容简介:项目中用到了一个叫做 Disruptor 的队列,今天楼主并不是要介绍 Disruptor 而是想巩固一下基础扒一下 JDK 中的阻塞队列,听到队列相信大家对其并不陌生,在我们现实生活中队列随处可见,最经典的就是去银行办理业务等。当然在计算机世界中,队列是属于一种数据结构,队列采用的FIFO(first in firstout),新元素(等待进入队列的元素)总是被插入到尾部,而读取的时候总是从头部开始读取。在计算中队列一般用来做排队(如线程池的等待排队,锁的等待排队),用来做解耦(生产者消费者模式),异步

项目中用到了一个叫做 Disruptor 的队列,今天楼主并不是要介绍 Disruptor 而是想巩固一下基础扒一下 JDK 中的阻塞队列,听到队列相信大家对其并不陌生,在我们现实生活中队列随处可见,最经典的就是去银行办理业务等。

当然在计算机世界中,队列是属于一种数据结构,队列采用的FIFO(first in firstout),新元素(等待进入队列的元素)总是被插入到尾部,而读取的时候总是从头部开始读取。在计算中队列一般用来做排队(如线程池的等待排队,锁的等待排队),用来做解耦(生产者消费者模式),异步等等。

JDK 中的队列

JDK 中的队列都实现了 java.util.Queue 接口,在队列中又分为两类,一类是线程不安全的,ArrayDeque,LinkedList等等,还有一类都在 java.util.concurrent 包下属于线程安全,而在我们真实的环境中,我们的机器都是属于多线程,当多线程对同一个队列进行操作的时,如果使用线程不安全会出现数据丢失等无法预测的事情,所以我们这个时候只能选择线程安全的队列。下面是我们今天要探讨的两个队列

队列名字 是否加锁 数据结构 关键技术点 是否有锁 是否有界
ArrayBlockingQueue 数组array ReentrantLock 有锁 有界
LinkedBlockingQueue 链表 ReentrantLock 有锁 有界

ArrayBlockingQueue 源码分析

ArrayBlockingQueue 的原理就是使用一个可重入锁(ReentrantLock )和这个锁生成的两个条件对象进行并发控制,ArrayBlockingQueue是一个有界的阻塞队列,初始化的时候必须要指定队列长度,且指定长度之后不允许进行修改。

成员变量属性

/** The queued items item的集合 */
   final Object[] items;

   /** items index for next take, poll, peek or remove 取出数据的索引 */
   int takeIndex;

   /** items index for next put, offer, or add 添加数据的索引 */
   int putIndex;

   /** Number of elements in the queue 队列元素的个数 */
   int count;

   /** Main lock guarding all access 可重入的锁 */
   final ReentrantLock lock;

   /** Condition for waiting takes 队列为空条件等待对象 */
   private final Condition notEmpty;

   /** Condition for waiting puts 队列满条件等待对象 */
   private final Condition notFull;

主要方法源码实现

  1. add:添加元素到队列里,添加成功返回true,由于容量满了添加失败会抛出 IllegalStateException 异常;
  2. offer:添加元素到队列里,添加成功返回true,添加失败返回false;
  3. put:添加元素到队列里,如果容量满了会阻塞直到容量不满;
  4. poll:删除队列头部元素,如果队列为空,返回null。否则返回元素;
  5. remove:基于对象找到对应的元素,并删除。删除成功返回true,否则返回false;
  6. take:删除队列头部元素,如果队列为空,一直阻塞到队列有元素并删除。

add方法:

public boolean add(E e) {
	if (offer(e))
		return true;
	else
		throw new IllegalStateException("Queue full");
}

offer方法:

public boolean offer(E e) {
	checkNotNull(e);
	final ReentrantLock lock = this.lock;
	lock.lock();
	try {
		if (count == items.length)
			return false;
		else {
			insert(e);
			return true;
		}
	} finally {
		lock.unlock();
	}
}

我们可以看到,如果队列满了则返回false,如果没有满调用insert。整个方法是通过可重入锁来锁住的,并且最终释放。

接着看一下 insert 方法:

private void insert(E x) {
	items[putIndex] = x; // 元素添加到数组里
	putIndex = inc(putIndex); // 放数据索引+1,当索引满了变成0
	++count; // 元素个数+1
	notEmpty.signal(); // 使用条件对象notEmpty通知
}

这里 insert 被调用的时候就会唤醒 notEmpty 上等待的线程进行 take 操作。

再看一下 put 方法:

public void put(E e) throws InterruptedException {
	checkNotNull(e); // 不允许元素为空
	final ReentrantLock lock = this.lock;
	lock.lockInterruptibly(); // 加锁,保证调用put方法的时候只有1个线程
	try {
		while (count == items.length) // 如果队列满了,阻塞当前线程,while用来防止假唤醒
			notFull.await(); // 线程阻塞并被挂起,同时释放锁
		insert(e); // 调用insert方法
	} finally {
		lock.unlock(); // 释放锁,让其他线程可以调用put方法
	}
}

通过上面代码我们可以知道, add 方法和 offer 方法不会阻塞线程, put 方法如果队列满了会阻塞线程,直到有线程消费了队列里的数据才有可能被唤醒。

紧接着我们看一下 poll 方法:

public E poll() {
	final ReentrantLock lock = this.lock;
	lock.lock(); // 加锁,保证调用poll方法的时候只有1个线程
	try {
		return (count == 0) ? null : extract(); // 如果队列里没元素了,返回null,否则调用extract方法
	} finally {
		lock.unlock(); // 释放锁,让其他线程可以调用poll方法
	}
}

看看这个 extract 方法,extract的翻译过来就是提取的意思:

private E extract() {
	final Object[] items = this.items;
	E x = this.<E>cast(items[takeIndex]); // 得到取索引位置上的元素
	items[takeIndex] = null; // 对应取索引上的数据清空
	takeIndex = inc(takeIndex); // 取数据索引+1,当索引满了变成0
	--count; // 元素个数-1
	notFull.signal(); // 使用条件对象notFull通知,原理同上面的insert中
	return x; // 返回元素
}

看一下 take 方法:

public E take() throws InterruptedException {
	final ReentrantLock lock = this.lock;
	lock.lockInterruptibly(); // 加锁,保证调用take方法的时候只有1个线程
	try {
		while (count == 0) // 如果队列空,阻塞当前线程,并加入到条件对象notEmpty的等待队列里
			notEmpty.await(); // 线程阻塞并被挂起,同时释放锁
		return extract(); // 调用extract方法
	} finally {
		lock.unlock(); // 释放锁,让其他线程可以调用take方法
	}
}

remove 方法:

public boolean remove(Object o) {
	if (o == null) return false;
	final Object[] items = this.items;
	final ReentrantLock lock = this.lock;
	lock.lock(); // 加锁,保证调用remove方法的时候只有1个线程
	try {
		for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) { // 遍历元素
			if (o.equals(items[i])) { // 两个对象相等的话
				removeAt(i); // 调用removeAt方法
				return true; // 删除成功,返回true
			}
		}
		return false; // 删除成功,返回false
	} finally {
		lock.unlock(); // 释放锁,让其他线程可以调用remove方法
	}
}

再看一下 removeAt 方法:

private void removeAt(int i) {
	final Object[] items = this.items;
	if (i == takeIndex) { 
		// 如果要删除数据的索引是取索引位置,直接删除取索引位置上的数据,然后取索引+1即可
		items[takeIndex] = null;
		takeIndex = inc(takeIndex);
	} else { 
		// 如果要删除数据的索引不是取索引位置,移动元素元素,更新取索引和放索引的值
		for (;;) {
			int nexti = inc(i);
			if (nexti != putIndex) {
				items[i] = items[nexti];
				i = nexti;
			} else {
				items[i] = null;
				putIndex = i;
				break;
			}
		}
	}
	--count; // 元素个数-1
	notFull.signal(); // 使用条件对象notFull通知
}

LinkedBlockingQueue 源码分析

LinkedBlockingQueue 是一个使用链表完成队列操作的阻塞队列。 链表是单向链表,而不是双向链表

成员变量属性

/** The capacity bound, or Integer.MAX_VALUE if none 容量大小 */
private final int capacity;

   /** Current number of elements 元素个数,因为有2个锁,存在竞态条件,使用AtomicInteger */
   private final AtomicInteger count = new AtomicInteger(0);

   /**
    * Head of linked list.
    * Invariant: head.item == null
    * 头结点
    */
   private transient Node<E> head;

   /**
    * Tail of linked list.
    * Invariant: last.next == null
    * 尾节点
    */
   private transient Node<E> last;

   /** Lock held by take, poll, etc 获取元素的锁 */
   private final ReentrantLock takeLock = new ReentrantLock();

   /** Wait queue for waiting takes 取元素的条件对象 */
   private final Condition notEmpty = takeLock.newCondition();

   /** Lock held by put, offer, etc 放元素的锁 */
   private final ReentrantLock putLock = new ReentrantLock();

   /** Wait queue for waiting puts 添加元素的条件对象 */
   private final Condition notFull = putLock.newCondition();

主要方法源码实现

由于文章篇幅问题对于 LinkedBlockingQueue 我们主要分析以下几个方法:

  1. offer:添加元素到队列里,添加成功返回true,添加失败返回false;
  2. put:添加元素到队列里,如果容量满了会阻塞直到容量不满;
  3. poll:删除队列头部元素,如果队列为空,返回null。否则返回元素;
  4. remove:基于对象找到对应的元素,并删除。删除成功返回true,否则返回false;
  5. take:删除队列头部元素,如果队列为空,一直阻塞到队列有元素并删除。

offer 方法:

public boolean offer(E e) {
	if (e == null) throw new NullPointerException(); // 不允许空元素
	final AtomicInteger count = this.count;
	if (count.get() == capacity) // 如果容量满了,返回false
		return false;
	int c = -1;
	Node<E> node = new Node(e); // 容量没满,以新元素构造节点
	final ReentrantLock putLock = this.putLock;
	putLock.lock(); // 放锁加锁,保证调用offer方法的时候只有1个线程
	try {
		// 再次判断容量是否已满,因为可能取元素锁在进行消费数据,没满的话继续执行
		if (count.get() < capacity) { 
			enqueue(node); // 节点添加到链表尾部
			c = count.getAndIncrement(); // 元素个数+1
			if (c + 1 < capacity) // 如果容量还没满
				notFull.signal(); // 在放锁的条件对象notFull上唤醒正在等待的线程,表示可以再次往队列里面加数据
		}
	} finally {
		putLock.unlock(); // 释放放锁,让其他线程可以调用offer方法
	}
	// 由于存在放元素锁和取元素锁,这里可能取元素锁一直在消费数据,count会变化。这里的if条件表示如果队列中还有1条数据
	if (c == 0) 
		// 在拿锁的条件对象notEmpty上唤醒正在等待的1个线程,表示队列里还有1条数据,可以进行消费
        signalNotEmpty(); 
	return c >= 0; // 添加成功返回true,否则返回false
}

put 方法:

public void put(E e) throws InterruptedException {
	if (e == null) throw new NullPointerException(); // 不允许空元素
	int c = -1;
	Node<E> node = new Node(e); // 以新元素构造节点
	final ReentrantLock putLock = this.putLock;
	final AtomicInteger count = this.count;
	putLock.lockInterruptibly(); // 放锁加锁,保证调用put方法的时候只有1个线程
	try {
		while (count.get() == capacity) { // 如果容量满了
			notFull.await(); // 阻塞并挂起当前线程
		}
		enqueue(node); // 节点添加到链表尾部
		c = count.getAndIncrement(); // 元素个数+1
		if (c + 1 < capacity) // 如果容量还没满
			// 在放锁的条件对象notFull上唤醒正在等待的线程,表示可以再次往队列里面加数据了,队列还没满
			notFull.signal();
	} finally {
		putLock.unlock(); // 释放放锁,让其他线程可以调用put方法
	}
	// 由于存在放锁和拿锁,这里可能拿锁一直在消费数据,count会变化。这里的if条件表示如果队列中还有1条数据
	if (c == 0)
		// 在拿锁的条件对象notEmpty上唤醒正在等待的1个线程,表示队列里还有1条数据,可以进行消费
		signalNotEmpty();
}

poll 方法:

public E poll() {
	final AtomicInteger count = this.count;
	if (count.get() == 0) // 如果元素个数为0
		return null; // 返回null
	E x = null;
	int c = -1;
	final ReentrantLock takeLock = this.takeLock;
	takeLock.lock(); // 拿锁加锁,保证调用poll方法的时候只有1个线程
	try {
		if (count.get() > 0) { // 判断队列里是否还有数据
			x = dequeue(); // 删除头结点
			c = count.getAndDecrement(); // 元素个数-1
			if (c > 1) // 如果队列里还有元素
				// 在拿锁的条件对象notEmpty上唤醒正在等待的线程,表示队列里还有数据,可以再次消费
				notEmpty.signal();
        }
    } finally {
        takeLock.unlock(); // 释放拿锁,让其他线程可以调用poll方法
    }
    // 由于存在放锁和拿锁,这里可能放锁一直在添加数据,count会变化。这里的if条件表示如果队列中还可以再插入数据
    if (c == capacity)
		// 在放锁的条件对象notFull上唤醒正在等待的1个线程,表示队列里还能再次添加数据
		signalNotFull(); 
	return x;
}

take 方法:

public E take() throws InterruptedException {
	E x;
	int c = -1;
	final AtomicInteger count = this.count;
	final ReentrantLock takeLock = this.takeLock;
	takeLock.lockInterruptibly(); // 拿锁加锁,保证调用take方法的时候只有1个线程
	try {
		while (count.get() == 0) { // 如果队列里已经没有元素了
			notEmpty.await(); // 阻塞并挂起当前线程
		}
		x = dequeue(); // 删除头结点
		c = count.getAndDecrement(); // 元素个数-1
		if (c > 1) // 如果队列里还有元素
			// 在拿锁的条件对象notEmpty上唤醒正在等待的线程,表示队列里还有数据,可以再次消费
			notEmpty.signal(); 
	} finally {
		takeLock.unlock(); // 释放拿锁,让其他线程可以调用take方法
	}
	// 由于存在放锁和拿锁,这里可能放锁一直在添加数据,count会变化。这里的if条件表示如果队列中还可以再插入数据
	if (c == capacity) 
		// 在放锁的条件对象notFull上唤醒正在等待的1个线程,表示队列里还能再次添加数据
		signalNotFull(); 
	return x;
}

remove 方法:

public boolean remove(Object o) {
	if (o == null) return false;
	fullyLock(); // remove操作要移动的位置不固定,对读锁写锁都进行加锁
	try {
		for (Node<E> trail = head, p = trail.next; // 从链表头结点开始遍历
			p != null;
			trail = p, p = p.next) {
			if (o.equals(p.item)) { // 判断是否找到对象
				unlink(p, trail); // 修改节点的链接信息,同时调用notFull的signal方法
				return true;
			}
		}
		return false;
	} finally {
		fullyUnlock(); // 2个锁解锁
	}
}

紧接着来看一下 fullyLockfullyUnlock 方法:

/**
 * Locks to prevent both puts and takes.
 */
 void fullyLock() {
     putLock.lock();
     takeLock.lock();
 }

 /**
  * Unlocks to allow both puts and takes.
  */
 void fullyUnlock() {
     takeLock.unlock();
     putLock.unlock();
 }

LinkedBlockingQueue 的take方法对于没数据的情况下会阻塞, poll 方法删除链表头结点,remove方法删除指定的对象。

需要注意的是 remove 方法由于要删除的数据的位置不确定,需要2个锁同时加锁。

小结

文章有点长,JDK中的阻塞队列线程安全的主要有 ArrayBlockingQueueLinkedBlockingQueueLinkedTransferQueueDelayQueue 四种,今天楼主把 ArrayBlockingQueueLinkedBlockingQueue 放在一起介绍主要原因是这两者都是使用可重入锁 ReentrantLock 实现的线程安全。

当然二者也有很大的不同,主要是:

1, ArrayBlockingQueue 只有1个锁,添加数据和删除数据的时候只能有1个被执行,不允许并行执行。

LinkedBlockingQueue 有2个锁,放元素锁和取元素锁,添加数据和删除数据是可以并行进行的,当然添加数据和删除数据的时候只能有1个线程各自执行。

2, ArrayBlockingQueue 中放入数据阻塞的时候,需要消费数据才能唤醒。

LinkedBlockingQueue 中放入数据阻塞的时候,因为它内部有2个锁,可以并行执行放入数据和消费数据,不仅在消费数据的时候进行唤醒插入阻塞的线程,同时在插入的时候如果容量还没满,也会唤醒插入阻塞的线程。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python网络编程攻略

Python网络编程攻略

萨卡尔 (Dr.M.O.Faruque Sarker) / 安道 / 人民邮电出版社 / 2014-12-1 / 45.00元

开发TCP/IP网络客户端和服务器应用 管理本地设备的IPv4/IPv6网络接口 使用HTTP和HTTPS协议编写用途多、效率高的Web客户端 编写可使用常见电子邮件协议的电子邮件客户端 通过Telnet和SSH连接执行远程系统管理任务 使用Web服务与流行的网站交互 监控并分析重要的常见网络安全漏洞一起来看看 《Python网络编程攻略》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换