leetcode题解(动态规划)

栏目: 编程工具 · 发布时间: 7年前

内容简介:动态规划本质依然是递归算法,只不过是满足特定条件的递归算法;动态规划是一个设计感比较强,艺术感比较强的一种算法设计思想。将原问题拆解成若干子问题,同时保存子问题的答案,使得每个子问题只求解一次,最终获得原问题的答案。通过计时我们会发现这个算法很慢,为什么这个解法效率这么低呢?当我们需要计算fib(5)时,它的递归树是:

动态规划本质依然是递归算法,只不过是满足特定条件的递归算法;动态规划是一个设计感比较强,艺术感比较强的一种算法设计思想。

什么是动态规划

定义

将原问题拆解成若干子问题,同时保存子问题的答案,使得每个子问题只求解一次,最终获得原问题的答案。

leetcode题解(动态规划)
  • 我们先解决小数据量的问题,之后层层递推来解决更大数据量的问题,通常这个过程就叫做动态规划。这个时间和记忆化搜索的时间复杂度是相当的,不过动态规划没有递归的调用,不需要额外调用和栈空间。
  • 动态规划是一个设计感比较强,艺术感比较强的一种算法设计思想。

一个简单例子

#include <iostream>
    #include <ctime>
    
    using namespace std;
    
    int num = 0;
    
    int fib( int n ){
    
        num ++;
    
        if( n == 0 )
            return 0;
    
        if( n == 1 )
            return 1;
    
        return fib(n-1) + fib(n-2);
    }
    
    int main() {
    
        num = 0;
    
        int n = 42;
        time_t startTime = clock();
        int res = fib(n);
        time_t endTime = clock();
    
        cout<<"fib("<<n<<") = "<<res<<endl;
        cout<<"time : "<<double(endTime-startTime)/CLOCKS_PER_SEC<<" s"<<endl;
        cout<<"run function fib() "<<num<<"times."<<endl;
    
        return 0;
    }
复制代码

分析

通过计时我们会发现这个算法很慢,为什么这个解法效率这么低呢?当我们需要计算fib(5)时,它的递归树是:

leetcode题解(动态规划)

从这个图可以看出这里面有大量的重复计算,我们怎样避免呢,我们可以在程序的外面做一个数组memo,其实memo[i]就记忆了第i个斐波那契数列。

#include <iostream>
    #include <ctime>
    #include <vector>
    using namespace std;
    
    vector<int> memo;
    int num = 0;
    
    // 记忆化搜索
    int fib( int n ){
    
        num ++;
    
        if( n == 0 )
            return 0;
    
        if( n == 1 )
            return 1;
    
        if( memo[n] == -1 )
            memo[n] = fib(n-1) + fib(n-2);
    
        return memo[n];
    }
    
    int main() {
    
        num = 0;
    
        int n = 42;
        memo = vector<int>(n+1,-1);
    
        time_t startTime = clock();
        int res = fib(n);
        time_t endTime = clock();
    
        cout<<"fib("<<n<<") = "<<res<<endl;
        cout<<"time : "<<double(endTime-startTime)/CLOCKS_PER_SEC<<" s"<<endl;
        cout<<"run function fib() "<<num<<"times."<<endl;
    
        return 0;
    }
    
复制代码

我们采用一个memo数组来记忆,所以叫做记忆化搜索。记忆化搜索其实就是在递归的过程中添加计划化,是一种自上向下的解决问题,我们假设基本的问题已经解决了,我们已经会求fib(n-1)和fib(n-2)了,那么我们就能求第n个数了。

如果我们能自上而下解决问题,我们也能自下而上解决问题,只不过很多时候我们习惯于前者。

#include <iostream>
    #include <ctime>
    #include <vector>
    using namespace std;
    
    // 动态规划
    int fib( int n ){
    
        vector<int> memo(n+1, -1);
    
        memo[0] = 0;
        memo[1] = 1;
        for( int i = 2 ; i <= n ; i ++ )
            memo[i] = memo[i-1] + memo[i-2];
    
        return memo[n];
    }
    
    int main() {
    
        // 结果会溢出,这里只看性能
        int n = 1000;
    
        time_t startTime = clock();
        int res = fib(n);
        time_t endTime = clock();
    
        cout<<"fib("<<n<<") = "<<res<<endl;
        cout<<"time : "<<double(endTime-startTime)/CLOCKS_PER_SEC<<" s"<<endl;
    
        return 0;
    }
    
复制代码

第一个动态规划问题

leetcode 70. 爬楼梯

leetcode题解(动态规划)

解题思路

我们来看一下递归的思路,把一个大的问题分解成小的问题。

leetcode题解(动态规划)

代码实现(递归)

#include <iostream>
    #include <vector>
    
    using namespace std;
    
    // 记忆化搜索
    class Solution {
    private:
        vector<int> memo;
    
        int calcWays(int n){
    
            if( n == 0 || n == 1)
                return 1;
    
            if( memo[n] == -1 )
                memo[n] = calcWays(n-1) + calcWays(n-2);
    
            return memo[n];
        }
    public:
        int climbStairs(int n) {
    
            memo = vector<int>(n+1,-1);
            return calcWays(n);
        }
    };
复制代码

代码实现(动态规划)

我们会发现和上面斐波那契一样,很轻易可以转化为动态规划解法。

#include <iostream>
    #include <vector>
    
    using namespace std;
    
    // 动态规划
    class Solution {
    
    public:
        int climbStairs(int n) {
    
            vector<int> memo(n+1, -1);
            memo[0] = 1;
            memo[1] = 1;
    
            for ( int i = 2; i <= n; i++ ) {
                memo[i] = memo[i-1] + memo[i-2];
            }
    
            return memo[n];
        }
    };

复制代码

相似问题

  • leetcode 120
  • leetcode 64

发现重叠子问题

leetcode 343. 整数拆分

leetcode题解(动态规划)

解题思路

leetcode题解(动态规划)

对于一个问题如果没有思路时,我们可以先考虑暴力解法。话句话说,我们使用什么样的方式,才能把正整数n的所有分割枚举出来,我们无法知道有几重循环,通常我们需要使用递归的手段。

暴力解法:回溯遍历将一个数做分割的所有可能性。O(2^n)

之所以递归树存在,是因为它有最优子结构

通过求子问题的最优解,可以获得原问题的最优解。

最优子结构

leetcode题解(动态规划)
  • 通过求子问题的最优解, 可以获得原问题的最优解

代码实现

实现1

#include <iostream>
    #include <cassert>
    
    using namespace std;
    
    class Solution {
    private:
        int max3( int a , int b , int c ){
            return max( a , max(b,c) );
        }
    
        // 将n进行分割(至少分割两部分), 可以获得的最大乘积
        int breakInteger( int n ){
    
            if( n == 1 )
                return 1;
    
            int res = -1;
            for( int i = 1 ; i <= n-1 ; i ++ )
                res = max3( res , i*(n-i) , i * breakInteger(n-i) );
            return res;
        }
    public:
        int integerBreak(int n) {
            assert( n >= 1 );
            return breakInteger(n);
        }
    };
    
    
复制代码

实现2

它包含重叠子问题,下面是记忆化搜索版本:

class Solution {
    private:
        vector<int> memo;
    
        int max3( int a , int b , int c ){
            return max( a , max(b,c) );
        }
    
        // 将n进行分割(至少分割两部分), 可以获得的最大乘积
        int breakInteger( int n ){
    
            if( n == 1 )
                return 1;
    
            if( memo[n] != -1 )
                return memo[n];
    
            int res = -1;
            for( int i = 1 ; i <= n-1 ; i ++ )
                res = max3( res , i*(n-i) , i * breakInteger(n-i) );
            memo[n] = res;
            return res;
        }
    public:
        int integerBreak(int n) {
            assert( n >= 1 );
            memo = vector<int>(n+1, -1);
            return breakInteger(n);
        }
    };
    
复制代码

实现3 动态规划

下面我们使用自底向上的方法,也就是动态规划解决这个问题

class Solution {
    
    private:
        int max3( int a , int b , int c ){
            return max(max(a,b),c);
        }
    public:
        int integerBreak(int n) {
    
            // memo[i] 表示将数字i分割(至少分割成两部分)后得到的最大乘积
            vector<int> memo(n+1, -1);
    
            memo[1] = 1;
            for ( int i = 2; i <= n; i++ ) {
                // 求解memo[i]
                for ( int j = 1; j <= i-1; j++ ) {
                    // j + (i-j)
                    memo[i] = max3( memo[i], j*(i-j), j*memo[i-j] );
                }
            }
    
            return memo[n];
    
        }
    };
    
复制代码

相似问题

  • leetcode 279
  • leetcode 91
  • leetcode 62
  • leetcode 63

状态的定义和状态转移

leetcode 198. 打家劫舍

leetcode题解(动态规划)

状态的定义

考虑偷取[x...n-1]范围里的房子(函数定义)

状态的转移

f(0) = max{ v(0) + f(2), v(1) + f(3), v(2) + f(4), … , v(n-3) + f(n-1), v(n-2), v(n-1)}(状态转移方程)

解题思路

leetcode题解(动态规划)

首先依然是如果没有思路的话,先考虑暴力解法。检查所有的房子,对每个组合,检查是否有相邻的房子,如果没有,记录其价值,找最大值。O((2^n)*n)

注意其中对状态的定义:

考虑偷取[x…n-1]范围里的房子(函数的定义)

根据对状态的定义,决定状态的转移:

f(0) = max{ v(0) + f(2), v(1) + f(3), v(2) + f(4), … , v(n-3) + f(n-1), v(n-2), v(n-1)}(状态转移方程)

实际上我们的递归函数就是在实现状态转移。

198. House Robber

实现代码

class Solution {
    private:
        // memo[i] 表示考虑抢劫 nums[i...n) 所能获得的最大收益
        vector<int> memo;
    
        // 考虑抢劫nums[index...nums.size())这个范围的所有房子
        int tryRob( vector<int> &nums, int index){
    
            if( index >= nums.size() )
                return 0;
    
            if( memo[index] != -1 )
                return memo[index];
    
            int res = 0;
            for( int i = index ; i < nums.size() ; i ++ )
                res = max(res, nums[i] + tryRob(nums, i+2));
            memo[index] = res;
            return res;
        }
    public:
        int rob(vector<int>& nums) {
    
            memo = vector<int>(nums.size(), -1);
            return tryRob(nums, 0);
        }
    };
    
复制代码

动态规划解法

class Solution {
    
    public:
        int rob(vector<int>& nums) {
    
            int n = nums.size();
    
            if( n == 0 ) {
                return 0;
            }
    
            // memo[i] 表示考虑抢劫 nums[i...n) 所能获得的最大收益
            vector<int> memo(n, 0);
            memo[n-1] = nums[n-1];
            for( int i = n-2 ; i >= 0 ; i -- ) {
                for (int j = i; j < n; j++) {
                    memo[i] = max(memo[i], nums[j] + (j + 2 < n ? memo[j + 2] : 0) );
                }
            }
    
            return memo[0];
        }
    };
    
复制代码

状态的另一种定义

我们所强调的是对于动态规划来说,我们要清晰自己对状态的定义,在我们之前的定义我们是去考虑偷取[x…n-1]范围里的房子(函数的定义)。对于同样的问题,很多时候我们可以设立不同的状态得到同样正确的答案。

改变对状态的定义:

考虑偷取[0…x]范围里的房子(函数的定义)。实现如下:

记忆化搜索代码实现

class Solution {

private:
    vector<int> memo;
    //考虑偷取[0..x]范围里的房子
    int tryRob(vector<int>&nums, int index){
        if (index < 0){
            return 0;
        }
        
        if (memo[index] != -1){
            return memo[index];
        }
        
        int res = 0;
        for( int i = index; i >= 0; i--){
            res = max(res, nums[i] + tryRob(nums, i - 2));
        }
        memo[index] = res;
        return res;
    }

public:
    
    int rob(vector<int>& nums) {
        int n = nums.size();
        memo = vector<int>(n + 1, -1);
        if (n == 0){
            return 0;
        }
        
        return tryRob(nums, n-1);
    }
};

复制代码

动态规划代码实现

class Solution {

public:
    
    //考虑偷取[0..x]范围里的房子
    int rob(vector<int>& nums) {
        int n = nums.size();
        vector<int> memo(n, -1);
        
        if (n == 0){
            return 0;
        }
        
        memo[0] = nums[0];
        
        for(int i = 1; i < n; i++){
            for(int j = i; j >= 0; j --){
                memo[i] = max(memo[i], nums[j] + (j-2 >= 0? memo[j-2]: 0));
            }
        }
        
        return memo[n-1];
        
    }
};
复制代码

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Beginning ARKit for iPhone and iPad

Beginning ARKit for iPhone and iPad

Wallace Wang / Apress / 2018-11-5 / USD 39.99

Explore how to use ARKit to create iOS apps and learn the basics of augmented reality while diving into ARKit specific topics. This book reveals how augmented reality allows you to view the screen on ......一起来看看 《Beginning ARKit for iPhone and iPad》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器