如何构建个性化推荐的完整数据流?

栏目: 编程工具 · 发布时间: 6年前

内容简介:上一部分我们介绍了一个推荐系统的具体架构实现,这一部分我们将对系统的数据流进行具体介绍。图 1 是个性化推荐系统的完整数据流。在这个数据流里面,神策推荐与神策分析系统在数据上形成了一个完美的闭环。神策分析系统可以提取用户行为数据,并结合其他数据源来构建基本的数据仓库。接下来通过特征工程(数据预处理、特征处理),完成数据的清洗、过滤、字典化、归一化、Embedding等,来产出适合模型读入的数据。经过模型训练与预测,便产生了个推的候选。其后,个性化推荐候选数据会被发送到推荐服务前端机器上生成索引,经过压缩,

上一部分我们介绍了一个推荐系统的具体架构实现,这一部分我们将对系统的数据流进行具体介绍。图 1 是个性化推荐系统的完整数据流。 如何构建个性化推荐的完整数据流?

图 1个性化推荐系统的数据流

在这个数据流里面,神策推荐与神策分析系统在数据上形成了一个完美的闭环。神策分析系统可以提取用户行为数据,并结合其他数据源来构建基本的数据仓库。接下来通过特征工程(数据预处理、特征处理),完成数据的清洗、过滤、字典化、归一化、Embedding等,来产出适合模型读入的数据。经过模型训练与预测,便产生了个推的候选。其后,个性化推荐候选数据会被发送到推荐服务前端机器上生成索引,经过压缩,灌入在线存储,从而通过推荐服务完成推荐业务。推荐结果在客户的用户端展现,新的用户行为则通过神策分析的数据采集系统,再次进入神策分析系统,作为新的数据参与后续的策略评估与修正,从而形成一个完整的闭环。

简而言之,神策分析系统天然地保存了用户行为数据及部分用户属性数据,只需要客户额外提供最基本的 Item 元数据,即可开始搭建最基本的个推业务。

同时,使用神策分析平台,可以实时进行个推系统的效果查看,灵活分析不同实验分流在多维度指标上的表现,快速指导迭代决策。数据埋点作为推荐系统的基础,怎样才能支持好实验的灵活响应,亦是门学问。神策推荐可以免去客户自己在推荐服务前端的埋点工作。神策分析与神策推荐两者的深度融合,形成了数据流上完美的闭环,大力推进产品智能的进程。

更多数据分析干货和案例,可以关注“神策数据”公众号了解~ 如何构建个性化推荐的完整数据流?


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

我++

我++

威廉·J·米切尔 / 刘小虎等 / 中国建筑工业出版社 / 2006-6 / 50.00元

随着《我++——电子自我和互联城市》(Me++:The Cyborg Self And The Networked City)的出版,《比特之城》(City Of Bits)和《E-托邦》(E-topia)的作者完成了一套检验信息技术在日常生活中之衍生的非正式三部曲。威廉·J·米切尔描述了自马可尼以后的百年间无线技术的发展变化:网络的不断扩大,发送和接受装置的不断缩小。正如他所说,这就像“大人国重......一起来看看 《我++》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具