内容简介:Deep Learning是由Rina Dechter于1986年创造的,它是机器学习领域发展最快的方法之一,常用于面部,语音和音频识别,语言处理,社交网络过滤和医学图像分析以及更具体的解决方案。任务,例如解决逆成像问题。传统上,深度学习系统在计算机上实现,以学习数据表示和抽象并执行任务,与人类的表现相当或更好。然而,由加州大学洛杉矶分校电气和计算机工程教授Aydogan Ozcan博士领导的团队并没有使用传统的计算机设备,放弃所有那些需要耗费能量的电子,转而使用光波。结果是其全光学衍射深度神经网络(D2
加州大学洛杉矶分校的研究人员创造了一个独特的全光学平台,以光速执行机器学习任务。这是一个新颖的想法,使用光线通过多个板而不是电子衍射。对某些人来说,这可能看起来有点像用算盘替换计算机,但加州大学洛杉矶分校的研究人员对他们的古怪,闪亮,光速的人工神经网络寄予厚望。
Deep Learning是由Rina Dechter于1986年创造的,它是机器学习领域发展最快的方法之一,常用于面部,语音和音频识别,语言处理,社交网络过滤和医学图像分析以及更具体的解决方案。任务,例如解决逆成像问题。传统上,深度学习系统在计算机上实现,以学习数据表示和抽象并执行任务,与人类的表现相当或更好。
然而,由加州大学洛杉矶分校电气和计算机工程教授Aydogan Ozcan博士领导的团队并没有使用传统的计算机设备,放弃所有那些需要耗费能量的电子,转而使用光波。结果是其全光学衍射深度神经网络(D2NN)架构。
该设置使用3D打印的半透明薄片,每个薄片具有数千个凸起像素,这些薄片通过每个面板偏转光线以执行设定任务。顺便说一下,除了输入光束之外,这些任务是在不使用任何功率的情况下,以光速执行图像分析,特征检测和对象分类。该团队的研究人员还设想了D2NN架构在摄像机中执行专门任务的可能性。
使用逐层制造的无源元件,并通过光衍射将这些层相互连接,创造了一个独特的全光平台,以光速执行机器学习任务。但就目前而言,这是一个概念证明,但它为机器学习行业提供了一些独特的机会。
以上所述就是小编给大家介绍的《3D打印的深度学习神经网络使用光子而不是电子进行计算》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 英特尔实现光子神经网络新突破,有效提升光子芯片效率
- MIT初创公司发布全球首个光子AI芯片原型!独立光学计算硬件,庞大系统成功集成至常规板卡丨独家专访
- 神经网络 – 序列预测LSTM神经网络落后
- 神经网络历史以及浅析神经网络与感知机
- 【神经网络】11行Python代码实现的神经网络
- 常见的五种神经网络(三):循环神经网络(上篇)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
利用Python进行数据分析 原书第2版
Wes McKinney / 徐敬一 / 机械工业出版社 / 2018-7 / 119
本书由Python pandas项目创始人Wes McKinney亲笔撰写,详细介绍利用Python进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas、NumPy、IPython和Jupyter,并增加大量实际案例,可以帮助你高效解决一系列数据分析问题。 第2版中的主要更新包括: • 所有的代码,包括把Py......一起来看看 《利用Python进行数据分析 原书第2版》 这本书的介绍吧!