内容简介:Swoole 源码分析——锁与信号模块
前言
对于多进程多线程的应用程序来说,保证数据正确的同步与更新离不开锁和信号,swoole
中的锁与信号基本采用 pthread
系列函数实现。UNIX
中的锁类型有很多种:互斥锁、自旋锁、文件锁、读写锁、原子锁,本节就会讲解 swoole
中各种锁的定义与使用。
数据结构
swoole
中无论哪种锁,其数据结构都是swLock
,这个数据结构内部有一个联合体object
,这个联合体可以是 互斥锁、自旋锁、文件锁、读写锁、原子锁,type
可以指代这个锁的类型,具体可选项是SW_LOCKS
这个枚举类型- 该结构体还定义了几个函数指针,这几个函数类似于各个锁需要实现的接口,值得注意的是
lock_rd
和trylock_rd
两个函数是专门为了swFileLock
和swRWLock
设计的,其他锁没有这两个函数。
typedef struct _swLock
{
int type;
union
{
swMutex mutex;
#ifdef HAVE_RWLOCK
swRWLock rwlock;
#endif
#ifdef HAVE_SPINLOCK
swSpinLock spinlock;
#endif
swFileLock filelock;
swSem sem;
swAtomicLock atomlock;
} object;
int (*lock_rd)(struct _swLock *);
int (*lock)(struct _swLock *);
int (*unlock)(struct _swLock *);
int (*trylock_rd)(struct _swLock *);
int (*trylock)(struct _swLock *);
int (*free)(struct _swLock *);
} swLock;
enum SW_LOCKS
{
SW_RWLOCK = 1,
#define SW_RWLOCK SW_RWLOCK
SW_FILELOCK = 2,
#define SW_FILELOCK SW_FILELOCK
SW_MUTEX = 3,
#define SW_MUTEX SW_MUTEX
SW_SEM = 4,
#define SW_SEM SW_SEM
SW_SPINLOCK = 5,
#define SW_SPINLOCK SW_SPINLOCK
SW_ATOMLOCK = 6,
#define SW_ATOMLOCK SW_ATOMLOCK
};
互斥锁
互斥锁是最常用的进程/线程锁,swMutex
的基础是 pthread_mutex
系列函数, 因此该数据结构只有两个成员变量:_lock
、attr
:
typedef struct _swMutex
{
pthread_mutex_t _lock;
pthread_mutexattr_t attr;
} swMutex;
互斥锁的创建
互斥锁的创建就是 pthread_mutex
互斥锁的初始化,首先初始化互斥锁的属性 pthread_mutexattr_t attr
,设定互斥锁是否要进程共享,之后设置各个关于锁的函数:
int swMutex_create(swLock *lock, int use_in_process)
{
int ret;
bzero(lock, sizeof(swLock));
lock->type = SW_MUTEX;
pthread_mutexattr_init(&lock->object.mutex.attr);
if (use_in_process == 1)
{
pthread_mutexattr_setpshared(&lock->object.mutex.attr, PTHREAD_PROCESS_SHARED);
}
if ((ret = pthread_mutex_init(&lock->object.mutex._lock, &lock->object.mutex.attr)) < 0)
{
return SW_ERR;
}
lock->lock = swMutex_lock;
lock->unlock = swMutex_unlock;
lock->trylock = swMutex_trylock;
lock->free = swMutex_free;
return SW_OK;
}
互斥锁函数
互斥锁的函数就是调用相应的 pthread_mutex
系列函数:
static int swMutex_lock(swLock *lock)
{
return pthread_mutex_lock(&lock->object.mutex._lock);
}
static int swMutex_unlock(swLock *lock)
{
return pthread_mutex_unlock(&lock->object.mutex._lock);
}
static int swMutex_trylock(swLock *lock)
{
return pthread_mutex_trylock(&lock->object.mutex._lock);
}
static int swMutex_free(swLock *lock)
{
pthread_mutexattr_destroy(&lock->object.mutex.attr);
return pthread_mutex_destroy(&lock->object.mutex._lock);
}
int swMutex_lockwait(swLock *lock, int timeout_msec)
{
struct timespec timeo;
timeo.tv_sec = timeout_msec / 1000;
timeo.tv_nsec = (timeout_msec - timeo.tv_sec * 1000) * 1000 * 1000;
return pthread_mutex_timedlock(&lock->object.mutex._lock, &timeo);
}
读写锁
对于读多写少的情况,读写锁可以显著的提高程序效率,swRWLock
的基础是 pthread_rwlock
系列函数:
typedef struct _swRWLock
{
pthread_rwlock_t _lock;
pthread_rwlockattr_t attr;
} swRWLock;
读写锁的创建
读写锁的创建过程和互斥锁类似:
int swRWLock_create(swLock *lock, int use_in_process)
{
int ret;
bzero(lock, sizeof(swLock));
lock->type = SW_RWLOCK;
pthread_rwlockattr_init(&lock->object.rwlock.attr);
if (use_in_process == 1)
{
pthread_rwlockattr_setpshared(&lock->object.rwlock.attr, PTHREAD_PROCESS_SHARED);
}
if ((ret = pthread_rwlock_init(&lock->object.rwlock._lock, &lock->object.rwlock.attr)) < 0)
{
return SW_ERR;
}
lock->lock_rd = swRWLock_lock_rd;
lock->lock = swRWLock_lock_rw;
lock->unlock = swRWLock_unlock;
lock->trylock = swRWLock_trylock_rw;
lock->trylock_rd = swRWLock_trylock_rd;
lock->free = swRWLock_free;
return SW_OK;
}
读写锁函数
static int swRWLock_lock_rd(swLock *lock)
{
return pthread_rwlock_rdlock(&lock->object.rwlock._lock);
}
static int swRWLock_lock_rw(swLock *lock)
{
return pthread_rwlock_wrlock(&lock->object.rwlock._lock);
}
static int swRWLock_unlock(swLock *lock)
{
return pthread_rwlock_unlock(&lock->object.rwlock._lock);
}
static int swRWLock_trylock_rd(swLock *lock)
{
return pthread_rwlock_tryrdlock(&lock->object.rwlock._lock);
}
static int swRWLock_trylock_rw(swLock *lock)
{
return pthread_rwlock_trywrlock(&lock->object.rwlock._lock);
}
static int swRWLock_free(swLock *lock)
{
return pthread_rwlock_destroy(&lock->object.rwlock._lock);
}
文件锁
文件锁是对多进程、多线程同一时间写相同文件这一场景设定的锁,底层函数是 fcntl
:
typedef struct _swFileLock
{
struct flock lock_t;
int fd;
} swFileLock;
文件锁的创建
int swFileLock_create(swLock *lock, int fd)
{
bzero(lock, sizeof(swLock));
lock->type = SW_FILELOCK;
lock->object.filelock.fd = fd;
lock->lock_rd = swFileLock_lock_rd;
lock->lock = swFileLock_lock_rw;
lock->trylock_rd = swFileLock_trylock_rd;
lock->trylock = swFileLock_trylock_rw;
lock->unlock = swFileLock_unlock;
lock->free = swFileLock_free;
return 0;
}
文件锁函数
static int swFileLock_lock_rd(swLock *lock)
{
lock->object.filelock.lock_t.l_type = F_RDLCK;
return fcntl(lock->object.filelock.fd, F_SETLKW, &lock->object.filelock);
}
static int swFileLock_lock_rw(swLock *lock)
{
lock->object.filelock.lock_t.l_type = F_WRLCK;
return fcntl(lock->object.filelock.fd, F_SETLKW, &lock->object.filelock);
}
static int swFileLock_unlock(swLock *lock)
{
lock->object.filelock.lock_t.l_type = F_UNLCK;
return fcntl(lock->object.filelock.fd, F_SETLKW, &lock->object.filelock);
}
static int swFileLock_trylock_rw(swLock *lock)
{
lock->object.filelock.lock_t.l_type = F_WRLCK;
return fcntl(lock->object.filelock.fd, F_SETLK, &lock->object.filelock);
}
static int swFileLock_trylock_rd(swLock *lock)
{
lock->object.filelock.lock_t.l_type = F_RDLCK;
return fcntl(lock->object.filelock.fd, F_SETLK, &lock->object.filelock);
}
static int swFileLock_free(swLock *lock)
{
return close(lock->object.filelock.fd);
}
自旋锁
自旋锁类似于互斥锁,不同的是自旋锁在加锁失败的时候,并不会沉入内核,而是空转,这样的锁效率更高,但是会空耗 CPU
资源:
typedef struct _swSpinLock
{
pthread_spinlock_t lock_t;
} swSpinLock;
自旋锁的创建
int swSpinLock_create(swLock *lock, int use_in_process)
{
int ret;
bzero(lock, sizeof(swLock));
lock->type = SW_SPINLOCK;
if ((ret = pthread_spin_init(&lock->object.spinlock.lock_t, use_in_process)) < 0)
{
return -1;
}
lock->lock = swSpinLock_lock;
lock->unlock = swSpinLock_unlock;
lock->trylock = swSpinLock_trylock;
lock->free = swSpinLock_free;
return 0;
}
自旋锁函数
static int swSpinLock_lock(swLock *lock)
{
return pthread_spin_lock(&lock->object.spinlock.lock_t);
}
static int swSpinLock_unlock(swLock *lock)
{
return pthread_spin_unlock(&lock->object.spinlock.lock_t);
}
static int swSpinLock_trylock(swLock *lock)
{
return pthread_spin_trylock(&lock->object.spinlock.lock_t);
}
static int swSpinLock_free(swLock *lock)
{
return pthread_spin_destroy(&lock->object.spinlock.lock_t);
}
原子锁
不同于以上几种锁,swoole
的原子锁并不是 pthread
系列的锁,而是自定义实现的。
typedef volatile uint32_t sw_atomic_uint32_t;
typedef sw_atomic_uint32_t sw_atomic_t;
typedef struct _swAtomicLock
{
sw_atomic_t lock_t;
uint32_t spin;
} swAtomicLock;
原子锁的创建
int swAtomicLock_create(swLock *lock, int spin)
{
bzero(lock, sizeof(swLock));
lock->type = SW_ATOMLOCK;
lock->object.atomlock.spin = spin;
lock->lock = swAtomicLock_lock;
lock->unlock = swAtomicLock_unlock;
lock->trylock = swAtomicLock_trylock;
return SW_OK;
}
原子锁的加锁
static int swAtomicLock_lock(swLock *lock)
{
sw_spinlock(&lock->object.atomlock.lock_t);
return SW_OK;
}
原子锁的加锁逻辑函数 sw_spinlock
非常复杂,具体步骤如下:
- 如果原子锁没有被锁,那么调用原子函数
sw_atomic_cmp_set
(__sync_bool_compare_and_swap
) 进行加锁 - 若原子锁已经被加锁,如果是单核,那么就调用
sched_yield
函数让出执行权,因为这说明自旋锁已经被其他进程加锁,但是却被强占睡眠,我们需要让出控制权让那个唯一的cpu
把那个进程跑下去,注意这时绝对不能进行自选,否则就是死锁。 - 如果是多核,就要不断空转的尝试加锁,防止睡眠,加锁的尝试间隔时间会指数增加,例如第一次 1 个时钟周期,第二次 2 时钟周期,第三次 4 时钟周期...
- 间隔时间内执行的函数
sw_atomic_cpu_pause
使用的是内嵌的汇编代码,目的在让cpu
空转,禁止线程或进程被其他线程强占导致睡眠,恢复上下文浪费时间。 - 如果超过了
SW_SPINLOCK_LOOP_N
次数,还没有能够获取的到锁,那么也要让出控制权,这时很有可能被锁保护的代码有阻塞行为
#define sw_atomic_cmp_set(lock, old, set) __sync_bool_compare_and_swap(lock, old, set)
#define sw_atomic_cpu_pause() __asm__ __volatile__ ("pause")
#define swYield() sched_yield() //or usleep(1)
static sw_inline void sw_spinlock(sw_atomic_t *lock)
{
uint32_t i, n;
while (1)
{
if (*lock == 0 && sw_atomic_cmp_set(lock, 0, 1))
{
return;
}
if (SW_CPU_NUM > 1)
{
for (n = 1; n < SW_SPINLOCK_LOOP_N; n <<= 1)
{
for (i = 0; i < n; i++)
{
sw_atomic_cpu_pause();
}
if (*lock == 0 && sw_atomic_cmp_set(lock, 0, 1))
{
return;
}
}
}
swYield();
}
}
原子锁的函数
static int swAtomicLock_unlock(swLock *lock)
{
return lock->object.atomlock.lock_t = 0;
}
static int swAtomicLock_trylock(swLock *lock)
{
sw_atomic_t *atomic = &lock->object.atomlock.lock_t;
return (*(atomic) == 0 && sw_atomic_cmp_set(atomic, 0, 1));
}
信号量
信号量也是数据同步的一种重要方式,其数据结构为:
typedef struct _swSem
{
key_t key;
int semid;
} swSem;
信号量的创建
- 信号量的初始化首先需要调用
semget
创建一个新的信号量 semctl
会将信号量初始化为 0
int swSem_create(swLock *lock, key_t key)
{
int ret;
lock->type = SW_SEM;
if ((ret = semget(key, 1, IPC_CREAT | 0666)) < 0)
{
return SW_ERR;
}
if (semctl(ret, 0, SETVAL, 1) == -1)
{
swWarn("semctl(SETVAL) failed");
return SW_ERR;
}
lock->object.sem.semid = ret;
lock->lock = swSem_lock;
lock->unlock = swSem_unlock;
lock->free = swSem_free;
return SW_OK;
}
信号量的 V 操作
static int swSem_unlock(swLock *lock)
{
struct sembuf sem;
sem.sem_flg = SEM_UNDO;
sem.sem_num = 0;
sem.sem_op = 1;
return semop(lock->object.sem.semid, &sem, 1);
}
信号量的 P 操作
static int swSem_lock(swLock *lock)
{
struct sembuf sem;
sem.sem_flg = SEM_UNDO;
sem.sem_num = 0;
sem.sem_op = -1;
return semop(lock->object.sem.semid, &sem, 1);
}
信号量的销毁
IPC_RMID
用于销毁信号量
static int swSem_free(swLock *lock)
{
return semctl(lock->object.sem.semid, 0, IPC_RMID);
}
条件变量
- 条件变量并没有作为
swLock
的一员,而是自成一体 - 条件变量不仅需要
pthread_cond_t
,还需要互斥量swLock
typedef struct _swCond
{
swLock _lock;
pthread_cond_t _cond;
int (*wait)(struct _swCond *object);
int (*timewait)(struct _swCond *object, long, long);
int (*notify)(struct _swCond *object);
int (*broadcast)(struct _swCond *object);
void (*free)(struct _swCond *object);
int (*lock)(struct _swCond *object);
int (*unlock)(struct _swCond *object);
} swCond;
条件变量的创建
int swCond_create(swCond *cond)
{
if (pthread_cond_init(&cond->_cond, NULL) < 0)
{
swWarn("pthread_cond_init fail. Error: %s [%d]", strerror(errno), errno);
return SW_ERR;
}
if (swMutex_create(&cond->_lock, 0) < 0)
{
return SW_ERR;
}
cond->notify = swCond_notify;
cond->broadcast = swCond_broadcast;
cond->timewait = swCond_timewait;
cond->wait = swCond_wait;
cond->lock = swCond_lock;
cond->unlock = swCond_unlock;
cond->free = swCond_free;
return SW_OK;
}
条件变量的函数
- 值得注意的是,条件变量的函数使用一定要结合
swCond_lock
、swCond_unlock
等函数
static int swCond_notify(swCond *cond)
{
return pthread_cond_signal(&cond->_cond);
}
static int swCond_broadcast(swCond *cond)
{
return pthread_cond_broadcast(&cond->_cond);
}
static int swCond_timewait(swCond *cond, long sec, long nsec)
{
struct timespec timeo;
timeo.tv_sec = sec;
timeo.tv_nsec = nsec;
return pthread_cond_timedwait(&cond->_cond, &cond->_lock.object.mutex._lock, &timeo);
}
static int swCond_wait(swCond *cond)
{
return pthread_cond_wait(&cond->_cond, &cond->_lock.object.mutex._lock);
}
static int swCond_lock(swCond *cond)
{
return cond->_lock.lock(&cond->_lock);
}
static int swCond_unlock(swCond *cond)
{
return cond->_lock.unlock(&cond->_lock);
}
static void swCond_free(swCond *cond)
{
pthread_cond_destroy(&cond->_cond);
cond->_lock.free(&cond->_lock);
}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Zepto源码学习Event模块
- NodeJS Cluster模块源码学习
- NodeJS Events模块源码学习
- 试读angular源码第四章:angular模块及JIT编译模块
- 对公司内部某个模块某个源码审计
- 比特币源码分析:txdb 模块(三)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
大型网站技术架构
李智慧 / 电子工业出版社 / 2013-9-1 / 59.00元
《大型网站技术架构:核心原理与案例分析》通过梳理大型网站技术发展历程,剖析大型网站技术架构模式,深入讲述大型互联网架构设计的核心原理,并通过一组典型网站技术架构设计案例,为读者呈现一幅包括技术选型、架构设计、性能优化、Web 安全、系统发布、运维监控等在内的大型网站开发全景视图。 《大型网站技术架构:核心原理与案例分析》不仅适用于指导网站工程师、架构师进行网站技术架构设计,也可用于指导产品经......一起来看看 《大型网站技术架构》 这本书的介绍吧!
HTML 编码/解码
HTML 编码/解码
正则表达式在线测试
正则表达式在线测试