搭PacBio全长转录组便车的无重复样本RNA-seq分析

栏目: 编程工具 · 发布时间: 6年前

内容简介:输入数据通常为count结果,很多工具可以用于生成此counts table 文件,上述软件通常第一步即对全转录组建立索引文件:point_down:For this example, we’ll be analyzing some Arabidopsis thaliana data, so we’ll download and index the A. thaliana transcriptome.
搭PacBio全长转录组便车的无重复样本RNA-seq分析

RNA-seq 分析是我当年入门生信的敲门砖,有参/无参的分析,当然还有现在升级的基于PacBio全长转录组的Illumina RNA-seq分析;

测序样本的重复性很重要,但总是能接到一些无重复的样本,对于他们的分析就没有像三次重复那么的顺手和多选择;

零、输入数据

输入数据通常为count结果,很多 工具 可以用于生成此counts table 文件,

  • [x] 如基于基因组比对的htseq-count;
  • [x] 基于全基因组的转录组结果的

上述软件通常第一步即对全转录组建立索引文件:point_down:

获取转录组

For this example, we’ll be analyzing some Arabidopsis thaliana data, so we’ll download and index the A. thaliana transcriptome.

curl ftp://ftp.ensemblgenomes.org/pub/plants/release-28/fasta/arabidopsis_thaliana/cdna/Arabidopsis_thaliana.TAIR10.28.cdna.all.fa.gz -o athal.fa.gz

建立索引

salmon index -t athal.fa.gz -i athal_index

定量基因表达情况

#!/bin/bash
for fn in data/DRR0161{25..40};
do
samp=`basename ${fn}`
echo "Processing sample ${samp}"
salmon quant -i athal_index -l A \
         -1 ${fn}/${samp}_1.fastq.gz \
         -2 ${fn}/${samp}_2.fastq.gz \
         -p 8 -o quants/${samp}_quant
done

后续差异基因分析

Once you have your quantification results you can use them for downstream analysis with differential expression tools like DESeq2, edgeR, limma, or sleuth. Using the tximport package, you can import salmon’s transcript-level quantifications and optionally aggregate them to the gene level for gene-level differential expression analysis. You can read more about how to import salmon’s results into DESeq2 by reading the tximport section of the excellent DESeq2 vignette. For instructions on importing for use with edgeR or limma, see the tximport vignette. For preparing salmon output for use with sleuth, see the wasabi package.

==首选 DESeq 的方法;==

一、 Analysing no replicate RNA-seq data with LPEseq package

LPEseq was designed for the RNA-Seq data with a small number of replicates, especially with non-replicate in each class. Also LPEseq can be equally applied both count-base and FPKM-based (non-count values) input data. 

二、 IsoEM2

三、 edgeR

 The quasi-likelihood method is highly recommended for differential expression analyses of bulk RNA-seq data as it gives stricter error rate control by accounting for the uncertainty in dispersion estimation. The likelihood ratio test can be useful in some special cases such as single cell RNA-seq and datasets with no replicates.

四、 NOISeq: Differential Expression in RNA-seq

library(NOISeq)
dat <- read.csv("/public/home/zpxu/hulisong/results/kallisto/All.tpm.csv",row.names=1)
mycounts <- read.csv("/public/home/zpxu/hulisong/results/kallisto/All.counts.csv",row.names=1)
myfactors <- read.table("/public/home/zpxu/hulisong/scripts/3sleuth_info.txt",header=T)
mydata <- readData(data = mycounts, factors = myfactors)
str(mydata)
head(assayData(mydata)$exprs)
head(pData(mydata))
head(featureData(mydata)@data)

mycountsbio = dat(mydata, factor = NULL, type = "countsbio")
explo.plot(mycountsbio, toplot = 1, samples = 1, plottype = "boxplot")
mysaturation = dat(mydata, k = 0, ndepth = 7, type = "saturation")
explo.plot(mysaturation, toplot = 1, samples = 1:2, yleftlim = NULL, yrightlim = NULL)
explo.plot(mycountsbio, toplot = 1, samples = NULL, plottype = "barplot")
mycd = dat(mydata, type = "cd", norm = FALSE, refColumn = 1)
## Normalization
## Differential expression: no replicates available
myresults <- noiseq(mydata, factor = "condition",conditions = c("H0", "H1"), k = NULL, norm = "n", pnr = 0.2,nss = 5, v = 0.02, lc = 1, replicates = "no")


head(myresults@results[[1]])
mynoiseq.deg = degenes(myresults, q = 0.95, M = NULL)
mynoiseq.deg1 = degenes(myresults, q = 0.95, M = "up")
mynoiseq.deg2 = degenes(myresults, q = 0.95, M = "down")


DE.plot(myresults, q = 0.95, graphic = "expr", log.scale = TRUE)
DE.plot(myresults, q = 0.95, graphic = "MD")
DE.plot(myresults, chromosomes = c(1, 2), log.scale = TRUE, join = FALSE,q = 0.95, graphic = "chrom")

If NOISeq-sim has been used because no replicates are available, then it is preferable to use a higher threshold such as q = 0.9

五、 DESeq2

Can I use DESeq2 to analyze a dataset without replicates?Question: Deseq2 for RNAseq experiments without replicates

For an experiment without replicates, you should just run DESeq() as normal.
library(DESeq2)
raw_count <- read.csv("/public/home/zpxu/hulisong/results/kallisto/All.counts.csv", header=TRUE, row.names=1)
## 4舍5入
countdata1 <- round(raw_count) 
head(countdata1)
## 去掉整行是0的行
all <- apply(countdata1, 1, function(x) all(x==0) )
newdata <- countdata1[!all,]
head (newdata)
## 筛选行总和大于200的行
dat <- newdata[rowSums(newdata > 200) >= 1,]
countdata <- as.matrix(dat)
head(countdata)
## 
countData<-countdata[,c("controlH_1","treatH1_1")]
myfactors <- read.table("/public/home/zpxu/hulisong/scripts/count_sleuth_info.txt",header=T)
myfactors
## 根据需要比较的样本筛选出相应的行
colData <- myfactors[c(1,3),]
#colData <- myfactors[which((myfactors$condition=="H0")|(myfactors$sample=="H1")),]
dds <- DESeqDataSetFromMatrix(
       countData = countData,
       colData = colData,
       design = ~ condition)
colData(dds)$condition <- factor(colData(dds)$condition,levels=c("H0","H1"))
dds
dds <- DESeq(dds)
res <- results(dds)
res <- res[order(res$padj),]
head(res)
sum(res$padj < 0.1, na.rm=TRUE)
res05 <- results(dds, alpha=0.05)
summary(res05)
sum(res05$padj < 0.05, na.rm=TRUE)

或者利用 tximport 直接将多个kallisto结果文件abundance.tsv导入R中;

tximport 导入数据

library("tximport")
samples <- read.table("/public/home/zpxu/hulisong/scripts/count_sleuth_info.txt", header = TRUE)
dir <- "/public/home/zpxu/hulisong/results/kallisto"
files <- file.path(dir, samples$sample, "abundance.tsv")
names(files) <- samples$sample
txi.kallisto.tsv <- tximport(files, type = "kallisto", txOut=TRUE)
head(txi.kallisto.tsv$counts)

DESeq2 进行差异表达计算

library("DESeq2")
head(txi.kallisto.tsv$counts)
raw_count <- txi.kallisto.tsv$counts
countdata1 <- round(raw_count) 
head(countdata1)
## 去掉整行是0的行
all <- apply(countdata1, 1, function(x) all(x==0) )
newdata <- countdata1[!all,]
head (newdata)
## 筛选行总和大于200的行
dat <- newdata[rowSums(newdata > 200) >= 1,]
countdata <- as.matrix(dat)
head(countdata)
countData <- countdata[,c("controlH_1", "treatH1_1")]
myfactors <- read.table("/public/home/zpxu/hulisong/scripts/count_sleuth_info.txt",header=T)
myfactors
## 根据需要比较的样本筛选出相应的行
colData <- myfactors[c(1,3),]
dds <- DESeqDataSetFromMatrix(
       countData = countData,
       colData = colData,
       design = ~ condition)
colData(dds)$condition <- factor(colData(dds)$condition,levels=c("H0","H1"))
dds
dds <- DESeq(dds)
res <- results(dds)
res <- res[order(res$padj),]
head(res)

六、 DESeq

library( "DESeq" )
raw_count <- read.csv("/public/home/zpxu/hulisong/results/kallisto/All.counts.csv", header=TRUE, row.names=1)
head(raw_count)
myfactors <- read.table("/public/home/zpxu/hulisong/scripts/count_sleuth_info.txt",header=T)
countdata1 <- round(raw_count)
head(countdata1)
all <- apply(countdata1, 1, function(x) all(x==0) )
newdata <- countdata1[!all,]
head (newdata)
countdata <- as.matrix(newdata)
head(countdata)
condition = myfactors$sample
cds = newCountDataSet( countdata, condition )
## Normalisation
cds = estimateSizeFactors(cds)
sizeFactors( cds )
head( counts( cds, normalized=TRUE ) )
## Calling differential expression
cds2 = cds[ ,c( "controlH_1", "treatH1_1" ) ]
## 无生物学重复选 method="blind"和sharingMode="fit-only"
cds2 = estimateDispersions( cds2, method="blind", sharingMode="fit-only" )
## 察看cds2中包含的 conditions,因为nbinomTest函数的第二和第三个参数输入的是cds2中所包含的conditions
dispTable(cds2) 
res = nbinomTest( cds2, "controlH_1", "treatH1_1" )
plotMA(res)
hist(res$pval, breaks=100, col="skyblue", border="slateblue", main="")
## 根据FDR筛选显著差异的基因
resSig = res[ res$padj < 0.05, ]
## 按照 P 值排序
head( resSig[ order(resSig$pval), ] )
SDE <- resSig[ order(resSig$pval), ]
## The most strongly down-regulated of the significant genes
head( resSig[ order( resSig$foldChange, -resSig$baseMean ), ] )
SDE_down <- resSig[ order( resSig$foldChange, -resSig$baseMean ), ]
## The most strongly up-regulated ones
head( resSig[ order( -resSig$foldChange, -resSig$baseMean ), ] )
SDE_up <- resSig[ order( -resSig$foldChange, -resSig$baseMean ), ]
write.csv( res, file="My Pasilla Analysis Result Table.csv")
addmargins( table(res2_sig = res$padj < 0.05 ) )

输出结果中 foldChangelog2FoldChange 列包含有 Inf-Inf ,根据 Re-extracting refgene names after DESeq Analysis 解释,是因为同一个基因在样本A中count极端大,而在样本 B 中为零造成的;那么如何避免这种问题出现呢?根据 Question: Statistical question (Deseq, Cuffdis) when one condition is zero? 解释,通常做法是全部数据都加一个较小的数值,但这也一个较小的数值也会在 log2FoldChange 时被放大;

A popular strategy to cope with zeros is to add a small number to all counts so that you avoid division by zero and at the same time you don’t bias the results (e.g. 1000:0 is reasonably equivalent to 1001:1). Having said that, this is an issue that bugs me sometime when interpreting fold change ratios since small numbers can have a large effect which is not consistent with the biological interpretation. For example, if you add 1 to all your counts you could get log2(1001/1)= 9.97; if instead you add 0.1(biologically the same, I would argue) you get log2(1000.1/0.1)= 13.29, which is a big difference.

结果中存在 NA 的解释见 Question: Deseq Infinite In Logfc And Na For P ValueDESeq: “NA” generated in the resulted differentially expressed genes ,不影响结果,直接去掉即可:point_down:

mydf[complete.cases(mydf), ]
resSig<-na.omit(resSig)

其他参考教程: RNA-Seq: differential expression using DESeq

多个组合比较差异基因分析

如下 Cross_DF.R 脚本可对不同组合进行差异基因的分析;

使用方式为: Rscript Cross_DF.R controlH_1 treatH1_1 /public/home/zpxu/hulisong/results/123/ 0.05

其中,

  • 第一个参数(controlH_1)为比较的对照;
  • 第二个参数(treatH1_1)为另外一组样本,即进行 controlH_1treatH1_1 之间的比较来找出差异基因;
  • 第三个参数(/public/home/zpxu/hulisong/results/123/) 为结果输出路径,包括保存的csv和pdf图片;
  • 第四个参数(0.05) 为最后差异基因筛选时 padj 的阈值和画MA图片时的 padj 值;
    arg <- commandArgs(T)
    ###### Input kallisto results ##########
    print("Input kallisto results")
    library("tximport")
    myfactors <- read.table("/public/home/zpxu/hulisong/scripts/count_sleuth_info.txt", header = TRUE)
    dir <- "/public/home/zpxu/hulisong/results/cds_kallisto"
    files <- file.path(dir, myfactors$sample, "abundance.tsv")
    names(files) <- myfactors$sample
    txi.kallisto.tsv <- tximport(files, type = "kallisto", txOut=TRUE)
    head(txi.kallisto.tsv$counts)
    ############## For DEGs ################
    library( "DESeq" )
    raw_count <- txi.kallisto.tsv$counts
    #raw_count <- read.csv("/public/home/zpxu/hulisong/results/kallisto/All.counts.csv", header=TRUE, row.names=1)
    head(raw_count)
    #myfactors <- read.table("/public/home/zpxu/hulisong/scripts/count_sleuth_info.txt",header=T)
    countdata1 <- round(raw_count)
    head(countdata1)
    all <- apply(countdata1, 1, function(x) all(x==0) )
    newdata <- countdata1[!all,]
    head (newdata)
    countdata <- as.matrix(newdata)
    head(countdata)
    condition = myfactors$sample
    cds = newCountDataSet( countdata, condition )
    # Normalisation
    print("Normalisation All Data")
    cds = estimateSizeFactors(cds)
    sizeFactors( cds )
    head( counts( cds, normalized=TRUE ) )
    # Select sample and do Variance estimation
    print("Select sample and do Variance estimation")
    cds2 = cds[ ,c(arg[1], arg[2]) ]
    cds2 = estimateDispersions( cds2, method="blind", sharingMode="fit-only",fitType = "local" )
    outdir <- arg[3]
    pdf(file=paste0(outdir,arg[1],"_Vs_",arg[2],".pdf"))
    print("Plot the per-gene estimates against the mean normalized counts per gene and overlay the fitted curve")
    plotDispEsts(cds2)
    #### Calling differential expression ###########
    print("Calling differential expression")
    res = nbinomTest( cds2, arg[1], arg[2] )
    plotMA(res,col = ifelse(res$padj>=arg[4], "gray32", "red3"), main=paste0(arg[1],"_Vs_",arg[2]))
    hist(res$pval, breaks=100, col="skyblue", border="slateblue", main=paste0(arg[1],"_Vs_",arg[2]))
    resSig = res[ res$padj < arg[4], ]
    N_resSig <- resSig[complete.cases(resSig), ]
    write.csv( N_resSig, paste0(outdir,arg[1],"_Vs_",arg[2],".csv"),row.names = FALSE)
    ############### The follows is option and can not do it If your want #####
    ############### Variance stabilizing transformation ##########
    print("Variance stabilizing transformation")
    vsd = varianceStabilizingTransformation( cds2 )
    library("vsn")
    notAllZero = (rowSums(counts(cds))>0)
    meanSdPlot(log2(counts(cds)[notAllZero, ] + 1))
    meanSdPlot(vsd[notAllZero, ])
    ########### Data quality assessment by sample clustering and visualisation ####
    print("Data quality assessment by sample clustering and visualisation")
    print("Heatmap of the count table")
    vsdFull = varianceStabilizingTransformation( cds2 )
    library("RColorBrewer")
    library("gplots")
    select = order(rowMeans(counts(cds2)), decreasing=TRUE)[1:30]
    hmcol = colorRampPalette(brewer.pal(9, "GnBu"))(100)
    heatmap.2(exprs(vsdFull)[select,], col = hmcol, trace="none", margin=c(10, 6))
    print("Heatmap of the sample-to-sample distances")
    dists = dist( t( exprs(vsdFull) ) )
    mat = as.matrix( dists )
    rownames(mat) = colnames(mat) = with(pData(cds2), paste(condition, condition, sep=" : "))
    heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13))
    print("Principal component plot of the samples")
    print(plotPCA(vsdFull, intgroup=c("condition", "condition")))
    dev.off()
    print(paste0("Run Complete. Please Check The Results in Directory: ",outdir))
    

批量不同组合运行方式:point_down:

for i in treatR1_1 treatR2_1 treatR3_1 treatR4_1 treatR5_1
do
Rscript Cross_DF.R controlR_1 ${i} /public/home/zpxu/hulisong/results/123/ 0.05
done

七、 LPEseq

install.packages("devtools")
library(devtools)
install_github("iedenkim/LPEseq")
library(LPEseq)
TPM <- read.csv("/public/home/zpxu/hulisong/results/kallisto/All.tpm.csv",header = T,row.names=1)
NewTPM <- TPM[rowSums(TPM==0)==0,]
head(NewTPM)
dim(NewTPM)
TPM.norm <- log(NewTPM, base = 2)
head(TPM.norm)
TPM.result.norep <- LPEseq.test(TPM.norm[,1], TPM.norm[,4])
head(TPM.result.norep)
TPM.result.norep.Sig = TPM.result.norep[TPM.result.norep$q.value < 0.05, ]
head(TPM.result.norep.Sig)
write.table(TPM.result.norep.Sig, file="result_file.txt", quote=F, sep="\t")

八、 GFOLD

基于基因组比对的bam文件计算差异表达基因;

Example 1: Count reads and rank genes

In the following example, hg19Ref.gtf is the ucsc knownGene table in GTF format for hg19; sample1.sam and sample2.sam are the mapped reads in SAM format.

gfold count -ann hg19Ref.gtf -tag sample1.sam -o sample1.read_cnt
gfold count -ann hg19Ref.gtf -tag sample2.sam -o sample2.read_cnt
gfold diff -s1 sample1 -s2 sample2 -suf .read_cnt -o sample1VSsample2.diff

Example 2: Count reads

This example utilizes samtools to produce mapped reads in SAM format from BAM format.

samtools view sample1.bam | gfold count -ann hg19Ref.gtf -tag stdin -o sample1.read_cnt

Example 3: Identify differentially expressed genes without replicates

Suppose there are two samples: sample1 and sample2 with corresponding read count file being sample1.read_cnt sample2.read_cnt. This example finds differentially expressed genes using default parameters on two samples

gfold diff -s1 sample1 -s2 sample2 -suf .read_cnt -o sample1VSsample2.diff

Example 4: Identify differentially expressed genes with replicates

This example finds differentially expressed genes using default parameters on two group of samples.

gfold diff -s1 sample1,sample2,sample3 -s2 sample4,sample5,sample6 -suf .read_cnt -o 123VS456.diff

Example 5: Identify differentially expressed genes with replicates only in one condition

This example finds differentially expressed genes using default parameters on two group of samples. Only the first group contains replicates. In this case, the variance estimated based on the first group will be used as the variance of the second group.

gfold diff -s1 sample1,sample2 -s2 sample3 -suf .read_cnt -o 12VS3.diff

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法精解

算法精解

Kyle Loudon / 肖翔、陈舸 / 机械工业出版社 / 2012-8 / 79.00元

本书是数据结构和算法领域的经典之作,十余年来,畅销不衰!全书共分为三部分:第一部分首先介绍了数据结构和算法的概念,以及使用它们的原因和意义,然后讲解了数据结构和算法中最常用的技术——指针和递归,最后还介绍了算法的分析方法,旨在为读者学习这本书打下坚实的基础;第二部分对链表、栈、队列、集合、哈希表、堆、图等常用数据结构进行了深入阐述;第三部分对排序、搜索数值计算、数据压缩、数据加密、图算法、几何算法......一起来看看 《算法精解》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具