JavaScript实现简单二叉查找树

栏目: 数据库 · 发布时间: 6年前

内容简介:前两天接到了蚂蚁金服的面试电话,面试官很直接,上来就抛出了三道算法题。。。其中有一道关于二叉树实现中序遍历的,当时没回答好,所以特意学习了一把二叉树的知识,行文记录总结。节点: 树中的每个元素称为一个节点,

前两天接到了蚂蚁金服的面试电话,面试官很直接,上来就抛出了三道算法题。。。

其中有一道关于二叉树实现中序遍历的,当时没回答好,所以特意学习了一把二叉树的知识,行文记录总结。

二叉树&二叉查找树

JavaScript实现简单二叉查找树

树相关术语:

节点: 树中的每个元素称为一个节点,

根节点: 位于整棵树顶点的节点,它没有父节点, 如上图 5

子节点: 其他节点的后代

叶子节点: 没有子节点的元素称为叶子节点, 如上图 3 8 24

二叉树:二叉树就是一种数据结构, 它的组织关系就像是自然界中的树一样。官方语言的定义是:是一个有限元素的集合,该集合或者为空、或者由一个称为根的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成。

二叉查找树: 二叉查找树也叫二叉搜索树(BST),它只允许我们在左节点存储比父节点更小的值,右节点存储比父节点更大的值,上图展示的就是一颗二叉查找树。

代码实现

首先创建一个类来表示二叉查找树,它的内部应该有一个Node类,用来创建节点

function BinarySearchTree () {
        var Node = function(key) {
            this.key = key,
            this.left = null,
            this.right = null
        }
        var root = null
    }
复制代码

它还应该有一些方法:

  • insert(key) 插入一个新的键
  • inOrderTraverse() 对树进行中序遍历,并打印结果
  • preOrderTraverse() 对树进行先序遍历,并打印结果
  • postOrderTraverse() 对树进行后序遍历,并打印结果
  • search(key) 查找树中的键,如果存在返回true,不存在返回fasle
  • findMin() 返回树中的最小值
  • findMax() 返回树中的最大值
  • remove(key) 删除树中的某个键

向树中插入一个键

向树中插入一个新的键,首页应该创建一个用来表示新节点的Node类实例,因此需要new一下Node类并传入需要插入的key值,它会自动初始化为左右节点为null的一个新节点

然后,需要做一些判断,先判断树是否为空,若为空,新插入的节点就作为根节点,如不为空,调用一个辅助方法insertNode()方法,将根节点和新节点传入

this.insert = function(key) {
        var newNode = new Node(key)
        if(root === null) {
            root = newNode
        } else {
            insertNode(root, newNode)
        }
    }
复制代码

定义一下insertNode() 方法,这个方法会通过递归得调用自身,来找到新添加节点的合适位置

var insertNode = function(node, newNode) {
        if (newNode.key <= node.key) {
            if (node.left === null) {
                node.left = newNode
            }else {
                insertNode(node.left, newNode)
            }
        }else {
            if (node.right === null) {
                node.right = newNode
            }else {
                insertNode(node.right, newNode)
            }
        }
    } 
复制代码

完成中序遍历方法

要实现中序遍历,我们需要一个inOrderTraverseNode(node)方法,它可以递归调用自身来遍历每个节点

this.inOrderTraverse = function() {
        inOrderTraverseNode(root)
    }
复制代码

这个方法会打印每个节点的key值,它需要一个递归终止条件————检查传入的node是否为null,如果不为空,就继续递归调用自身检查node的left、right节点 实现起来也很简单:

var inOrderTraverseNode = function(node) {
        if (node !== null) {
            inOrderTraverseNode(node.left)
            console.log(node.key)
            inOrderTraverseNode(node.right)
        }
    }
复制代码

先序遍历、后序遍历

有了中序遍历的方法,只需要稍作改动,就可以实现先序遍历和后序遍历了 上代码:

这样就可以对整棵树进行中序遍历了

// 实现先序遍历
    this.preOrderTraverse = function() {
        preOrderTraverseNode(root)
    }
    var preOrderTraverseNode = function(node) {
        if (node !== null) {
            console.log(node.key)
            preOrderTraverseNode(node.left)
            preOrderTraverseNode(node.right)
        }
    }

    // 实现后序遍历
    this.postOrderTraverse = function() {
        postOrderTraverseNode(root)
    }
    var postOrderTraverseNode = function(node) {
        if (node !== null) {
            postOrderTraverseNode(node.left)
            postOrderTraverseNode(node.right)
            console.log(node.key)
        }
    }
复制代码

发现了吧,其实就是内部语句更换了前后位置,这也刚好符合三种遍历规则:先序遍历(根-左-右)、中序遍历(左-根-右)、中序遍历(左-右-根)

先来做个测试吧

现在的完整代码如下:

function BinarySearchTree () {
        var Node = function(key) {
            this.key = key,
            this.left = null,
            this.right = null
        }
        var root = null
        
        //插入节点
        this.insert = function(key) {
            var newNode = new Node(key)
            if(root === null) {
                root = newNode
            } else {
                insertNode(root, newNode)
            }
        }
        var insertNode = function(node, newNode) {
            if (newNode.key <= node.key) {
                if (node.left === null) {
                    node.left = newNode
                }else {
                    insertNode(node.left, newNode)
                }
            }else {
                if (node.right === null) {
                    node.right = newNode
                }else {
                    insertNode(node.right, newNode)
                }
            }
        } 
        
        //实现中序遍历
        this.inOrderTraverse = function() {
            inOrderTraverseNode(root)
        }
        var inOrderTraverseNode = function(node) {
            if (node !== null) {
                inOrderTraverseNode(node.left)
                console.log(node.key)
                inOrderTraverseNode(node.right)
            }
        }
        // 实现先序遍历
        this.preOrderTraverse = function() {
            preOrderTraverseNode(root)
        }
        var preOrderTraverseNode = function(node) {
            if (node !== null) {
                console.log(node.key)
                preOrderTraverseNode(node.left)
                preOrderTraverseNode(node.right)
            }
        }

        // 实现后序遍历
        this.postOrderTraverse = function() {
            postOrderTraverseNode(root)
        }
        var postOrderTraverseNode = function(node) {
            if (node !== null) {
                postOrderTraverseNode(node.left)
                postOrderTraverseNode(node.right)
                console.log(node.key)
            }
        }
    }
复制代码

竟然已经完成了添加新节点和遍历的方式,我们来测试一下吧:

定义一个数组,里面有一些元素

var arr = [9,6,3,8,12,15]

我们将arr中的每个元素依此插入到二叉搜索树中,然后打印结果

var tree = new BinarySearchTree()
    arr.map(item => {
        tree.insert(item)
    })
    tree.inOrderTraverse()
    tree.preOrderTraverse()
    tree.postOrderTraverse()
复制代码

运行代码后,我们先来看看插入节点后整颗树的情况:

JavaScript实现简单二叉查找树

输出结果

中序遍历: 3 6 8 9 12 15

先序遍历: 9 6 3 8 12 15

后序遍历: 3 8 6 15 12 9

很明显,结果是符合预期的,所以,我们用上面的JavaScript代码,实现了对树的节点插入,和三种遍历方法,同时,很明显可以看到,在二叉查找树树种,最左侧的节点的值是最小的,而最右侧的节点的值是最大的,所以二叉查找树可以很方便的拿到其中的最大值和最小值

查找最小、最大值

怎么做呢?其实只需要将根节点传入minNode/或maxNode方法,然后通过循环判断node为左侧(minNode)/右侧(maxNode)的节点为null

实现代码:

// 查找最小值
    this.findMin = function() {
        return minNode(root)
    }
    var minNode = function(node) {
        if (node) {
            while (node && node.left !== null) {
                node = node.left
            }
            return node.key
        }
        return null
    }
    
    // 查找最大值
    this.findMax = function() {
        return maxNode(root)
    }
    var maxNode = function (node) {
        if(node) {
            while (node && node.right !== null) {
                node =node.right
            }
            return node.key
        }
        return null
    }
复制代码

所搜特定值

this.search = function(key) {
    return searchNode(root, key)
}
复制代码

同样,实现它需要定义一个辅助方法,这个方法首先会检验node的合法性,如果为null,直接退出,并返回fasle。如果传入的key比当前传入node的key值小,它会继续递归查找node的左侧节点,反之,查找右侧节点。如果找到相等节点,直接退出,并返回true

var searchNode = function(node, key) {
        if (node === null) {
            return false
        }
        if (key < node.key) {
            return searchNode(node.left, key)
        }else if (key > node.key) {
            return searchNode(node.right, key)
        }else {
            return true
        }
    }
复制代码

移除节点

移除节点的实现情况比较复杂,它会有三种不同的情况:

  • 需要移除的节点是一个叶子节点

  • 需要移除的节点包含一个子节点

  • 需要移除的节点包含两个子节点

和实现搜索指定节点一元,要移除某个节点,必须先找到它所在的位置,因此移除方法的实现中部分代码和上面相同:

// 移除节点
    this.remove = function(key) {
        removeNode(root,key)
    }
    var removeNode = function(node, key) {
        if (node === null) {
            return null
        }
        if (key < node.key) {
            node.left = removeNode(node.left, key)
            return node
        }else if(key > node.key) {
            node.right = removeNode(node.right,key)
            return node
        }else{
            //需要移除的节点是一个叶子节点
            if (node.left === null && node.right === null) {
                node = null
                return node
            }
            //需要移除的节点包含一个子节点
            if (node.letf === null) {
                node = node.right
                return node
            }else if (node.right === null) {
                node = node.left
                return node
            }
            //需要移除的节点包含两个子节点
            var aux = findMinNode(node.right)
            node.key = aux.key
            node.right = removeNode(node.right, axu.key)
            return node
        }
    }
    var findMinNode = function(node) {
        if (node) {
            while (node && node.left !== null) {
                node = node.left
            }
            return node
        }
        return null
    }
复制代码

其中,移除包含两个子节点的节点是最复杂的情况,它包含左侧节点和右侧节点,对它进行移除主要需要三个步骤:

  1. 需要找到它右侧子树中的最小节点来代替它的位置
  2. 将它右侧子树中的最小节点移除
  3. 将更新后的节点的引用指向原节点的父节点

有点绕儿,但必须这样,因为删除元素后的二叉搜索树必须保持它的 排序 性质

测试删除节点

tree.remove(8)
tree.inOrderTraverse()
复制代码

打印结果:

3 6 9 12 15

8 这个节点被成功删除了,但是对二叉查找树进行中序遍历依然是保持排序性质的

到这里,一个简单的二叉查找树就基本上完成了,我们为它实现了,添加、查找、删除以及先中后三种遍历方法

存在的问题

但是实际上这样的二叉查找树是存在一些问题的,当我们不断的添加更大/更小的元素的时候,会出现如下情况:

tree.insert(16)
tree.insert(17)
tree.insert(18)
复制代码

来看看现在整颗树的情况:

JavaScript实现简单二叉查找树

很容易发现,它是不平衡的,这又会引出平衡树的概念,要解决这个问题,还需要更复杂的实现,例如:AVL树,红黑树 哎,之后再慢慢去学习吧

关于实现二叉排序树,我也找到慕课网的一系列的视频: Javascript实现二叉树算法 , 内容和上述实现基本一致

原文链接: 行无忌的成长小屋:JavaScript实现简单二叉查找树


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

注意力经济: 如何把大众的注意力变成生意

注意力经济: 如何把大众的注意力变成生意

吴修铭 / 中信出版集团股份有限公司 / 2018-4-1 / 69

编辑推荐 这本书由万维钢作序,并在《得到》日课中多次推荐!中文版未上市之前,中文前沿媒体就在力推这本书!关于注意力争夺战的历史和现在,作者给了权威的梳理和定位! 百年来,在争夺注意力的战场上,媒体、广告、商人、企业和大众成为博弈的主角。商人是如何在注意力争夺战中获利的?媒体是如何在改变报道形式的?广告是如何进化的?以及,营销是如何变得随处可见、无孔不入的呢?这本书讲述了令商人或企业从吸......一起来看看 《注意力经济: 如何把大众的注意力变成生意》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具