NIH发布包含 10600 张 CT 图像数据库,为 AI 算法测试铺路

栏目: 编程工具 · 发布时间: 6年前

雷锋网消息,美国国立卫生研究院(NIH)最近发布了一个庞大的胸部X光数据库,现已公开近10600张CT扫描图像,以支持医疗人工智能算法的开发和测试。

这个大型成像数据库被称为DeepLesion,是由美国国立卫生研究院的Ronald Summers及其同事创建的。他们对其机构里的放射科医生的CT扫描结果进行了临床相关的标注。

Summers是NIH影像生物标记和计算机辅助诊断实验室的高级研究员和放射学家。

根据美国国立卫生研究院的说法,这些标注通常很复杂,包括描述病变大小和位置的箭头、线条、分割和文本,以便让临床医生可以监测疾病变化。标注医学图像需要广泛的临床经验,并且会耗费大量时间。

实际上,缺乏可用于训练AI算法的大型医学图像数据库一直被认为是AI技术寻求突破的主要障碍之一。Summers及其同事的努力就是为了改变这种状况,至少在X光方面 。去年他们发布了ChestX-ray8数据库,库中包含了100000张X光图像。

DeepLesion通过提供足够强大的CT扫描数据库和附带的标注来训练深度神经网络,从而帮助绕过这些障碍。美国国立卫生研究院建议,有朝一日可以“使科学界能够创建一个具有统一框架的大规模通用病变检测器”。

NIH发布包含 10600 张 CT 图像数据库,为 AI 算法测试铺路

雷锋网 (公众号:雷锋网) 了解到,该数据库包括来自马里兰州贝塞斯达NIH临床中心的4400多名患者的大约10600项研究。虽然目前大多数数据库包含10至数百个单一类型的病变,但该组设计的DeepLesion可容纳超过32000个病灶,涵盖各种放射学发现,如肺结节、淋巴结肿大和肝肿瘤。

有了多范畴的病变数据库,DeepLesion为研究人员提供了开发人工智能算法的机会,能够自动检测和诊断多种病变类型。美国国立卫生研究院指出,未来它还可能发展成为一个通用病变检测器,可用作初始筛选工具,并将其结果发送到其他更专业的算法。此外,研究人员可能可以在同一次CT扫描中研究不同类型病变之间的关系,从而全面评估癌症负担。

为了开始展示这种潜力,Summers及其同事用DeepLesion数据库来训练一个典型的通用病变检测器,以发现各种病变。他们的探测器灵敏度达到81.1%,每个图像有5个假阳性。

据雷锋网了解,研究人员计划继续向DeepLesion添加图像,以提高检测器的准确性,他们希望将MRI扫描包含在数据库中,并结合未来多家医院的数据。该研究小组认为,除了病变检测外,该数据库还可以帮助训练算法对病变进行分类,并根据现有模式预测病变的发展。

数据库的下载地址: https://nihcc.app.box.com/v/DeepLesion

雷锋网原创文章,未经授权禁止转载。详情见 转载须知


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

通灵芯片

通灵芯片

Daniel Hillis / 崔良沂 / 上海世纪出版集团 / 2009-1 / 19.80元

本书深入浅出地阐述了计算机科学中许多基本而重要的概念,包括布尔逻辑、有限自动机、编程语言、图灵机的普遍性、信息论、算法、并行计算、量子计算、神经网络、机器学习乃至自组织系统。 作者高屋建瓴式的概括,既不失深度,又妙趣横生,相信读者读后会有很多启发。 目录: 序言:石的奇迹 第一章 通用件 第二章 万能积木 第三章 程序设计 第四章 图灵机的普适性 第......一起来看看 《通灵芯片》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具