使用Spring Request-Reply实现基于Kafka的同步请求响应

栏目: 服务器 · Apache · 发布时间: 6年前

内容简介:大家提到Kafka时第一印象就是它是一个快速的异步消息处理系统,不同于通常tomcat之类应用服务器和前端之间的请求/响应方式请求,客户端发出一个请求,必然会等到一个响应,这种方式对Kafka来说并不自然,Kafka是一种事件驱动方式,事件激活然后响应,这种方式对很多人接受起来不方便,为了实现请求 - 响应模型,开发人员必须在消息的生产者记录中构建相关ID系统,并将其与消息的消费者记录中的ID进行匹配,找到那个请求ID再使用Kafka的一个队列进行回复。随着Spring-Kafka最新版本推出(Sprin

大家提到Kafka时第一印象就是它是一个快速的异步消息处理系统,不同于通常tomcat之类应用服务器和前端之间的请求/响应方式请求,客户端发出一个请求,必然会等到一个响应,这种方式对Kafka来说并不自然,Kafka是一种事件驱动方式,事件激活然后响应,这种方式对很多人接受起来不方便,为了实现请求 - 响应模型,开发人员必须在消息的生产者记录中构建相关ID系统,并将其与消息的消费者记录中的ID进行匹配,找到那个请求ID再使用Kafka的一个队列进行回复。

随着Spring-Kafka最新版本推出(Spring replying kafka 模板),这种请求-响应语义现在已经变成现成的了,本案例例演示了Spring-Kafka实现的简单性,源码见 github

下图是本案例的演示架构图,这个案例是以同步行为返回两个数字总和的结果。

客户端  --->请求---> RESTcontroll ---> Spring replying kafka 模板 -->Kafka的请求主题 -->Spring Kafka监听器 
   |                                                                                        |
   |<----- 响应 <----RESTcontroll <-- Spring replying kafka 模板 <-- Kafka的响应主题<---------|
  

下面我们开始看看开发这个演示步骤:

设置Springboot启动类

首先需要在pom.xml引入Spring kafka模板:

  <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
    </dependency>

代码如下:


@SpringBootApplication
public class RequestReplyKafkaApplication {

public static void main(String[] args) {
SpringApplication.run(RequestReplyKafkaApplication.class, args);
}
}

设置Spring ReplyingKafkaTemplate

我们需要在Springboot配置类的KafkaConfig对Spring kafka模板进行配置:


@Configuration
public class KafkaConfig {

在这个配置类中,我们需要配置核心的ReplyingKafkaTemplate类,这个类继承了 KafkaTemplate 提供请求/响应的的行为;还有一个生产者工厂(参见 ProducerFactory 下面的代码)和 KafkaMessageListenerContainer。这是最基本的设置,因为请求响应模型需要对应到消息生产者和消费者的行为。


// 这是核心的ReplyingKafkaTemplate
@Bean
public ReplyingKafkaTemplate<String, Model, Model> replyKafkaTemplate(ProducerFactory<String, Model> pf, KafkaMessageListenerContainer<String, Model> container) {
return new ReplyingKafkaTemplate<>(pf, container);
}

// 配件:监听器容器Listener Container to be set up in ReplyingKafkaTemplate
@Bean
public KafkaMessageListenerContainer<String, Model> replyContainer(ConsumerFactory<String, Model> cf) {
ContainerProperties containerProperties = new ContainerProperties(requestReplyTopic);
return new KafkaMessageListenerContainer<>(cf, containerProperties);
}

// 配件:生产者工厂Default Producer Factory to be used in ReplyingKafkaTemplate
@Bean
public ProducerFactory<String,Model> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}

// 配件:kafka生产者的Kafka配置Standard KafkaProducer settings - specifying brokerand serializer
@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
bootstrapServers);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.class);
return props;
}

设置spring-Kafka的监听器

这与通常创建的Kafka消费者相同。唯一的变化是额外是在工厂中设置ReplyTemplate,这是必须的,因为消费者需要将计算结果放入到Kafka的响应主题。


//消费者工厂 Default Consumer Factory
@Bean
public ConsumerFactory<String, Model> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs(),new StringDeserializer(),new JsonDeserializer<>(Model.class));
}

// 并发监听器容器Concurrent Listner container factory
@Bean
public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, Model>> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, Model> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
// NOTE - set up of reply template 设置响应模板
factory.setReplyTemplate(kafkaTemplate());
return factory;
}

// Standard KafkaTemplate
@Bean
public KafkaTemplate<String, Model> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}

编写我们的kafka消费者

这是过去创建的Kafka消费者一样。唯一的变化是附加了@SendTo注释,此注释用于在响应主题上返回业务结果。


@KafkaListener(topics = "${kafka.topic.request-topic}")
@SendTo
public Model listen(Model request) throws InterruptedException {
int sum = request.getFirstNumber() + request.getSecondNumber();
request.setAdditionalProperty(
"sum", sum);
return request;
}

这个消费者用于业务计算,把客户端通过请求传入的两个数字进行相加,然后返回这个请求,通过@SendTo发送到Kafka的响应主题。

总结服务

现在,让我们将所有这些都结合在一起放在RESTcontroller,步骤分为几步,先创建生产者记录,并在记录头部中设置接受响应的Kafka主题,这样

把请求和响应在Kafka那里对应起来,然后通过模板发布消息到Kafka,再通过future.get()堵塞等待Kafka的响应主题发送响应结果过来。这时再

打印结果记录中的头部信息,会看到Spring自动生成相关ID。


@ResponseBody
@PostMapping(value="/sum",produces=MediaType.APPLICATION_JSON_VALUE,consumes=MediaType.APPLICATION_JSON_VALUE)
public Model sum(@RequestBody Model request)throws InterruptedException,ExecutionException {
//创建生产者记录
ProducerRecord<String,Model> record = new ProducerRecord<String,Model>(requestTopic,request);
//在记录头部中设置响应主题
record.headers().add(new RecordHeader(KafkaHeaders.REPLY_TOPIC, requestReplyTopic.getBytes()));
//发布到kafka主题中
RequestReplyFuture<String, Model, Model> sendAndReceive = kafkaTemplate.sendAndReceive(record);

//确认生产者是否成功生产
SendResult<String, Model> sendResult = sendAndReceive.getSendFuture().get();

//打印结果记录中所有头部信息 会看到Spring自动生成的相关ID,这个ID是由消费端@SendTo 注释返回的值。
sendResult.getProducerRecord().headers().forEach(header -> System.out.println(header.key() +
":" + header.value().toString()));

//获取消费者记录
ConsumerRecord<String, Model> consumerRecord = sendAndReceive.get();

//返回消费者结果
return consumerRecord.value();
}

并发消费者

即使你要创建请求主题在三个分区中,三个并发的消费者的响应仍然合并到一个Kafka响应主题,这样,Spring侦听器的容器能够完成匹配相关ID的繁重工作。

整个请求/响应的模型是一致的。

现在我们可以再修改启动类如下:


@ComponentScan(basePackages = {
"com.gauravg.config",
"com.gauravg.consumer",
"com.gauravg.controller",
"com.gauravg.model"
})
@SpringBootApplication
public class RequestReplyKafkaApplication {

public static void main(String[] args) {
SpringApplication.run(RequestReplyKafkaApplication.class, args);
}
}

下面开始运行这个案例:

1.下载源码见 github

2.先启动kafka

3.直接运行上面启动类

4.通过postman等 工具 访问:

http://localhost:8080/sum

post数据:


{
"firstNumber": "111",
"secondNumber": "2222"
}

返回结果是:


{
"firstNumber": 111,
"secondNumber": 2222,
"sum": 2333
}

在控制台输出记录头部信息:

kafka_replyTopic:[B@1f59b198
kafka_correlationId:[B@356a7326
__TypeId__:[B@1a9111f

可见,Spring自动生成聚合ID(correlationId),无需我们自己手工比对了。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

你不是个玩意儿

你不是个玩意儿

杰伦·拉尼尔 / 葛仲君 / 中信出版社 / 2011-8 / 35.00元

“你不是个玩意儿。” 这句话当然不是骂人,这是一个宣言。人当然不是玩意儿,不是机器,而是人。 在网络化程度越来越高的今天,我们每个人似乎都有足够的理由,无限欣喜地拥抱互联网。然而,你有没有想过互联网那些不完美的设计却是某种潜在的威胁…… 为什么如此多的暴民在社交网站上争吵不休,很多骂人的脏话我们在现实的人际交往中可能从来不会使用,但在匿名网络环境中却漫天飞舞? 互联网的本质......一起来看看 《你不是个玩意儿》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具