Spark mllib 逻辑回归

栏目: 服务器 · 发布时间: 7年前

内容简介:逻辑回归其实是一个分类算法而不是回归算法。通常是利用已知的自变量来预测一个离散型因变量的值(像二进制值0/1,是/否,真/假)。简单来说,它就是通过拟合一个逻辑函数(logit fuction)来预测一个事件发生的概率。所以它预测的是一个概率值,自然,它的输出值应该在0到1之间。假设你的一个朋友让你回答一道题。可能的结果只有两种:你答对了或没有答对。为了研究你最擅长的题目领域,你做了各种领域的题目。那么这个研究的结果可能是这样的:如果是一道十年级的三角函数题,你有70%的可能性能解出它。但如果是一道五年级

逻辑回归

逻辑回归其实是一个分类算法而不是回归算法。通常是利用已知的自变量来预测一个离散型因变量的值(像二进制值0/1,是/否,真/假)。简单来说,它就是通过拟合一个逻辑函数(logit fuction)来预测一个事件发生的概率。所以它预测的是一个概率值,自然,它的输出值应该在0到1之间。

假设你的一个朋友让你回答一道题。可能的结果只有两种:你答对了或没有答对。为了研究你最擅长的题目领域,你做了各种领域的题目。那么这个研究的结果可能是这样的:如果是一道十年级的三角函数题,你有70%的可能性能解出它。但如果是一道五年级的历史题,你会的概率可能只有30%。逻辑回归就是给你这样的概率结果。

Logistic回归简单分析

优点:计算代价不高,易于理解和实现

缺点:容易欠拟合,分类精度可能不高

适用数据类型:数值型和标称型数据

package com.immooc.spark

import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}

object logistic_regression {


  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("LogisticRegressionWithLBFGSExample").setMaster("local[2]")
    val sc = new SparkContext(conf)

    // $example on$
    // Load training data in LIBSVM format.
    val data = MLUtils.loadLibSVMFile(sc, "file:///Users/walle/Documents/D3/sparkmlib/wa.txt")

    // Split data into training (60%) and test (40%).
    val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)

    // Run training algorithm to build the model
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(10)
      .run(training)

    // Compute raw scores on the test set.
    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }

    val print_predict = predictionAndLabels.take(20)
    println("prediction" + "\t" + "label")

    for (i <- 0 to print_predict.length - 1){
       println(print_predict(i)._1 + "\t" + print_predict(i)._2)
    }

    val patient = Vectors.dense(Array(70,3,180.0,4,3))
    val prediction = model.predict(patient)
    println(prediction)

    // Get evaluation metrics.
    val metrics = new MulticlassMetrics(predictionAndLabels)
    val accuracy = metrics.accuracy
    println(s"Accuracy = $accuracy")

    // Save and load model
    //    model.save(sc, "target/tmp/scalaLogisticRegressionWithLBFGSModel")
    //    val sameModel = LogisticRegressionModel.load(sc,
    //      "target/tmp/scalaLogisticRegressionWithLBFGSModel")
    // $example off$

    sc.stop()
  }
}
0 1:59 2:2 3:43.4 4:2 5:1
0 1:36 2:1 3:57.2 4:1 5:1
0 1:61 2:2 3:190 4:2 5:1
1 1:58 2:3 3:128 4:4 5:3
1 1:55 2:3 3:80 4:3 5:4
0 1:61 2:1 3:94 4:4 5:2
0 1:38 2:1 3:76 4:1 5:1
0 1:42 2:1 3:240 4:3 5:2
0 1:50 2:1 3:74 4:1 5:1
0 1:58 2:2 3:68.6 4:2 5:2
0 1:68 2:3 3:132.8 4:4 5:2
1 1:25 2:2 3:94.6 4:4 5:3
0 1:52 2:1 3:56 4:1 5:1
0 1:31 2:1 3:47.8 4:2 5:1
1 1:36 2:3 3:31.6 4:3 5:1
0 1:42 2:1 3:66.2 4:2 5:1
1 1:14 2:3 3:138.6 4:3 5:3
0 1:32 2:1 3:114 4:2 5:3
0 1:35 2:1 3:40.2 4:2 5:1
1 1:70 2:3 3:177.2 4:4 5:3
1 1:65 2:2 3:51.6 4:4 5:4
0 1:45 2:2 3:124 4:2 5:4
1 1:68 2:3 3:127.2 4:3 5:3
0 1:31 2:2 3:124.8 4:2 5:3

输出

prediction	label
0.0	0.0
0.0	1.0
0.0	0.0
0.0	0.0
1.0	1.0
0.0	0.0
1.0	1.0
0.0	0.0
0.0	1.0
0.0	0.0
0.0	1.0
0.0	0.0
0.0
Accuracy = 0.75

4649


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

群体性孤独

群体性孤独

[美] 雪莉·特克尔 / 周逵、刘菁荆 / 浙江人民出版社 / 2014-3-1 / CNY 66.90

[内容简介] ☆ 你是否也熟悉这样的场景:家人在一起,不是交心,而是各自看电脑和手机;朋友聚会,不是叙旧,而是拼命刷新微博、微信;课堂上,老师在讲,学生在网上聊天;会议中,别人在报告,听众在收发信息。所有这些现象都可以归结为“群体性孤独”——我们似乎在一起,但实际上活在自己的“气泡”中。我们期待他人少,期待技术多。不间断的联系,是否让人类陷入了更深的孤独? ☆ 麻省理工学院社会学教授雪......一起来看看 《群体性孤独》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试