内容简介:从该序列的首元素往后观察,一旦出现乱序现象停止该轮观察,从该乱序元素开始逐个吸收元素组成一个序列,直到该序列所有元素的平均值小于或等于下一个待吸收的元素。举例:原始序列:<9, 10, 14>
从该序列的首元素往后观察,一旦出现乱序现象停止该轮观察,从该乱序元素开始逐个吸收元素组成一个序列,直到该序列所有元素的平均值小于或等于下一个待吸收的元素。
举例:
原始序列:<9, 10, 14>
结果序列:<9, 10, 14>
分析:从9往后观察,到最后的元素14都未发现乱序情况,不用处理。
原始序列:<9, 14, 10>
结果序列:<9, 12, 12>
分析:从9往后观察,观察到14时发生乱序(14>10),停止该轮观察转入吸收元素处理,吸收元素10后子序列为<14, 10>,取该序列所有元素的平均值得12,故用序列<12, 12>替代<14, 10>。吸收10后已经到了最后的元素,处理操作完成。
原始序列:<14, 9, 10, 15>
结果序列:<11, 11, 11, 15>
分析:从14往后观察,观察到9时发生乱序(14>9),停止该轮观察转入吸收元素处理,吸收元素9后子序列为<14,9>。求该序列所有元素的平均值得12.5,由于12.5大于下个待吸收的元素10,所以再吸收10,得序列<14, 9, 10>。求该序列所有元素的平均值得11,由于11小于下个待吸收的元素15,所以停止吸收操作,用序列<11, 11, 11>替代<14, 9, 10>。
package com.immooc.spark import org.apache.log4j.{Level, Logger} import org.apache.spark.mllib.regression.IsotonicRegression import org.apache.spark.{SparkConf, SparkContext} object Isotonic_Regression { def main(args:Array[String]): Unit = { val conf = new SparkConf().setAppName("LinearRegressionWithSGD").setMaster("local[2]") val sc = new SparkContext(conf) Logger.getRootLogger.setLevel(Level.WARN) val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/sample_isotonic_regression_data.txt") val parsedData = data.map{ line=> val parts = line.split(',').map(_.toDouble) (parts(0), parts(1), 1.0) } val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L) val training = splits(0) val test = splits(1) val model = new IsotonicRegression().setIsotonic(true).run(training) val x = model.boundaries val y = model.predictions println("boundaries" + "\t" + "predictions") for (i <- 0 to x.length -1){ println(x(i) + "\t" + y(i)) } val predictionAndLabel = test.map{ point => val predictedLabel = model.predict(point._2) (predictedLabel, point._1) } val print_predict = predictionAndLabel.collect println("prediction" + "\t" + "label") for (i <- 0 to print_predict.length - 1) { println(print_predict(i)._1 + "\t" + print_predict(i)._2) } val meanSquaredError = predictionAndLabel.map { case (p, l) => math.pow((p - l), 2) }.mean() println("Mean Squared Error = " + meanSquaredError) } }
4659
以上所述就是小编给大家介绍的《Spark mllib 保序回归》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 机器学习算法之岭回归、Lasso回归和ElasticNet回归
- [机器学习实战-Logistic回归]使用Logistic回归预测各种实例
- 线性回归背后的数学
- PyTorch 学习:线性回归
- 逻辑回归——详细概述
- 线性回归数学推导
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
jQuery
Earle Castledine、Craig Sharkie / SitePoint / 2010-02-28 / USD 39.95
jQuery: Novice to Ninja is a compilation of best-practice jQuery solutions to meet the most challenging JavaScript problems. In this question-and-answer book on jQuery, you'll find a cookbook of ready......一起来看看 《jQuery》 这本书的介绍吧!