Spark mllib 贝叶斯分类

栏目: 服务器 · 发布时间: 7年前

内容简介:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

贝叶斯定理

已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为: Spark mllib 贝叶斯分类

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

下面直接给出贝叶斯定理:

Spark mllib 贝叶斯分类

package com.immooc.spark

import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.{SparkConf, SparkContext}

object NaiveBayesTest {
  def main(args:Array[String]): Unit = {


    val conf = new SparkConf().setAppName("NaiveBayes").setMaster("local[2]")
    val sc = new SparkContext(conf)

    Logger.getRootLogger.setLevel(Level.WARN)

     val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/football.txt")
     val parsedData = data.map{ line =>
         val parts = line.split(',')
         LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
     }
     val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
     val training = splits(0)
     val test = splits(1)

     val model = NaiveBayes.train(training, lambda = 1.0, modelType = "multinomial")

     val predictionAndLabel = test.map(p => (model.predict(p.features), p.label))
     val print_predict = predictionAndLabel.take(20)
      for (i <- 0 to print_predict.length - 1){
         println(print_predict(i)._1 + "\t" + print_predict(i)._2)
      }

    println("Predictionof (0.0, 2.0, 0.0, 1.0):"+model.predict(Vectors.dense(0.0,2.0,0.0,1.0)))

  }
}

http://www.waitingfy.com/archives/4671

1. 数据

0,0 0 0 0
0,0 0 0 1
1,1 0 0 0 
1,2 1 0 0
1,2 2 1 0
0,2 2 1 1
1,1 2 1 1 
0,0 1 0 0
1,0 2 1 0
1,2 1 1 0
1,0 1 1 1
1,1 1 0 1
1,1 0 1 0
0,2 1 0 1

2. 输出

1.0	1.0
1.0	1.0
0.0	1.0
1.0	1.0
0.0	0.0
Predictionof (0.0, 2.0, 0.0, 1.0):0.0

4671


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Programming Computer Vision with Python

Programming Computer Vision with Python

Jan Erik Solem / O'Reilly Media / 2012-6-22 / USD 39.99

If you want a basic understanding of computer vision's underlying theory and algorithms, this hands-on introduction is the ideal place to start. As a student, researcher, hacker, or enthusiast, you'll......一起来看看 《Programming Computer Vision with Python》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具