Spark mllib 决策树

栏目: 服务器 · 发布时间: 6年前

package com.immooc.spark

import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.util.MLUtils

object DecisionTreeTest {
  def main(args:Array[String]): Unit = {


    val conf = new SparkConf().setAppName("DecisionTreeTest").setMaster("local[2]")
    val sc = new SparkContext(conf)

    Logger.getRootLogger.setLevel(Level.WARN)

    // 读取样本数据1,格式为LIBSVM format
    val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/data.txt")
    val parsedData = data.map{ line =>
      val parts = line.split(',')
      LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
    }


    //样本数据划分训练样本与测试样本
    val splits = parsedData.randomSplit(Array(0.7, 0.3), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)

     val numClasses = 2
     val categoricalFeaturesInfo = Map[Int, Int]()
     val impurity = "gini"
     val maxDepth = 5
     val maxBins = 32

     val model = DecisionTree.trainClassifier(training, numClasses, categoricalFeaturesInfo, impurity, maxDepth, maxBins)


    //模型预测
    val labelAndPreds = test.map { point =>
      val prediction = model.predict(point.features)
      (point.label, prediction)
    }

    //测试值与真实值对比
    val print_predict = labelAndPreds.take(15)
    println("label" + "\t" + "prediction")
    for (i <- 0 to print_predict.length - 1) {
      println(print_predict(i)._1 + "\t" + print_predict(i)._2)
    }

    //树的错误率
    val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / test.count()
    println("Test Error = " + testErr)
    //打印树的判断值
    println("Learned classification tree model:\n" + model.toDebugString)

  }
}

1. 数据

0,32 1 1 0
0,25 1 2 0
1,29 1 2 1
1,24 1 1 0
0,31 1 1 0
1,35 1 2 1
0,30 0 1 0
0,31 1 1 0
1,30 1 2 1
1,21 1 1 0
0,21 1 2 0
1,21 1 2 1
0,29 0 2 1
0,29 1 0 1
0,29 0 2 1
1,30 1 1 0

2. 结果

label	prediction
1.0	1.0
1.0	1.0
1.0	0.0
0.0	1.0
0.0	0.0
Test Error = 0.4
Learned classification tree model:
DecisionTreeModel classifier of depth 5 with 11 nodes
  If (feature 0 <= 33.5)
   If (feature 0 <= 30.5)
    If (feature 1 <= 0.5)
     Predict: 0.0
    Else (feature 1 > 0.5)
     If (feature 0 <= 27.0)
      If (feature 2 <= 1.5)
       Predict: 1.0
      Else (feature 2 > 1.5)
       Predict: 0.0
     Else (feature 0 > 27.0)
      Predict: 1.0
   Else (feature 0 > 30.5)
    Predict: 0.0
  Else (feature 0 > 33.5)
   Predict: 1.0
4691

以上所述就是小编给大家介绍的《Spark mllib 决策树》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Using Google App Engine

Using Google App Engine

Charles Severance / O'Reilly Media / 2009-5-23 / USD 29.99

With this book, you can build exciting, scalable web applications quickly and confidently, using Google App Engine - even if you have little or no experience in programming or web development. App Eng......一起来看看 《Using Google App Engine》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具