内容简介:K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。1. 输出4699
K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。
package com.immooc.spark import org.apache.log4j.{Level, Logger} import org.apache.spark.mllib.clustering.KMeans import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.{SparkConf, SparkContext} object KMeansTest { def main(args:Array[String]): Unit = { val conf = new SparkConf().setAppName("KMeansTest").setMaster("local[2]") val sc = new SparkContext(conf) Logger.getRootLogger.setLevel(Level.WARN) // 读取样本数据1,格式为LIBSVM format val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/kmeans_data.txt") val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache() // 新建KMeans聚类模型,并训练 val initMode = "k-means||" val numClusters = 4 val numIterations = 100 val model = new KMeans(). setInitializationMode(initMode). setK(numClusters). setMaxIterations(numIterations). run(parsedData) val centers = model.clusterCenters println("centers") for (i <- 0 to centers.length - 1) { println(centers(i)(0) + "\t" + centers(i)(1)) } // 误差计算 val WSSSE = model.computeCost(parsedData) println("Within Set Sum of Squared Errors = " + WSSSE) } }
1. 输出
centers 9.05 9.05 0.05 0.05 9.2 9.2 0.2 0.2 Within Set Sum of Squared Errors = 0.03000000000004321
4699
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 监控聚合器系列之: open-falcon新聚合器polymetric
- elasticsearch学习笔记(七)——快速入门案例实战之电商网站商品管理:嵌套聚合,下钻分析,聚合分析
- mongodb高级聚合查询
- MongoDB聚合(aggregate)
- mongodb 聚合管道
- MongoDB指南---16、聚合
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
测试驱动的JavaScript开发
Christian Johansen / 赵勇、程德、凌杰、高博 / 机械工业出版社 / 2012-2-9 / 69.00元
本书是一本完整的、基于最佳实践的JavaScript敏捷测试指南,同时又有着测试驱动开发方法(TDD)所带来的质量保证。领先一步的JavaScript敏捷开发者Christian Johansen的讨论涵盖了将最先进的自动化测试用于JavaScript开发环境的方方面面,带领读者走查整个开发的生命周期,从项目启动到应用程序部署。本书的主要内容包括:掌握自动化测试和TDD;构建有效的自动化测试工作流......一起来看看 《测试驱动的JavaScript开发》 这本书的介绍吧!