内容简介:K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。1. 输出4699
K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。
package com.immooc.spark
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.{SparkConf, SparkContext}
object KMeansTest {
def main(args:Array[String]): Unit = {
val conf = new SparkConf().setAppName("KMeansTest").setMaster("local[2]")
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN)
// 读取样本数据1,格式为LIBSVM format
val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/kmeans_data.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()
// 新建KMeans聚类模型,并训练
val initMode = "k-means||"
val numClusters = 4
val numIterations = 100
val model = new KMeans().
setInitializationMode(initMode).
setK(numClusters).
setMaxIterations(numIterations).
run(parsedData)
val centers = model.clusterCenters
println("centers")
for (i <- 0 to centers.length - 1) {
println(centers(i)(0) + "\t" + centers(i)(1))
}
// 误差计算
val WSSSE = model.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
}
}
1. 输出
centers 9.05 9.05 0.05 0.05 9.2 9.2 0.2 0.2 Within Set Sum of Squared Errors = 0.03000000000004321
4699
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 监控聚合器系列之: open-falcon新聚合器polymetric
- elasticsearch学习笔记(七)——快速入门案例实战之电商网站商品管理:嵌套聚合,下钻分析,聚合分析
- mongodb高级聚合查询
- MongoDB聚合(aggregate)
- mongodb 聚合管道
- MongoDB指南---16、聚合
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
iOS应用逆向工程 第2版
沙梓社、吴航 / 机械工业出版社 / 2015-4-1 / 79.00
你是否曾因应用上线的第一天即遭破解而无奈苦恼,想要加以防范,却又束手无策? 你是否曾为某一应用深深折服,想要借鉴学习,却又无从下手? 你是否已不满足于public API,想要进军Cydia开发,却又求学无门? 你是否已产生“不识Apple真面目,只缘身在App Store中”的危机感,想要通过阅读来一窥这冰山一角外的整个北极,却又找不到合适的书? 你是否已经因无法跨越开发......一起来看看 《iOS应用逆向工程 第2版》 这本书的介绍吧!