Spark mllib k-means 聚合

栏目: 服务器 · 发布时间: 7年前

内容简介:K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。1. 输出4699

K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。

package com.immooc.spark

import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.{SparkConf, SparkContext}

object KMeansTest {
  def main(args:Array[String]): Unit = {


    val conf = new SparkConf().setAppName("KMeansTest").setMaster("local[2]")
    val sc = new SparkContext(conf)

    Logger.getRootLogger.setLevel(Level.WARN)

    // 读取样本数据1,格式为LIBSVM format
    val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/kmeans_data.txt")
    val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()

    // 新建KMeans聚类模型,并训练
    val initMode = "k-means||"
    val numClusters = 4
    val numIterations = 100
    val model = new KMeans().
      setInitializationMode(initMode).
      setK(numClusters).
      setMaxIterations(numIterations).
      run(parsedData)
    val centers = model.clusterCenters
    println("centers")
    for (i <- 0 to centers.length - 1) {
      println(centers(i)(0) + "\t" + centers(i)(1))
    }

    // 误差计算
    val WSSSE = model.computeCost(parsedData)
    println("Within Set Sum of Squared Errors = " + WSSSE)
  }
}

1. 输出

centers
9.05	9.05
0.05	0.05
9.2	9.2
0.2	0.2
Within Set Sum of Squared Errors = 0.03000000000004321

4699


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

趣学Python编程

趣学Python编程

Jason Briggs / 尹哲 / 人民邮电出版社 / 2014-3 / 45.00元

python是一款解释型、面向对象、动态数据类型的高级程序设计语言。python语法简捷而清晰,具有丰富和强大的类库,因而在各种行业中得到广泛的应用。对于初学者来讲,python是一款既容易学又相当有用的编程语言,国内外很多大学开设这款语言课程,将python作为一门编程语言学习。 《趣学python编程》是一本轻松、快速掌握python编程的入门读物。全书分为3部分,共18章。第1部分是第......一起来看看 《趣学Python编程》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

html转js在线工具
html转js在线工具

html转js在线工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具