记录pyspark ml与pmml的用法

栏目: 服务器 · 发布时间: 6年前

内容简介:这两天实践了一下sklearn、pyspark ml、pmml,下面记录一下。项目地址:train_df.show()打印出了经过RFormula特征提取后的DataFrame:

这两天实践了一下sklearn、pyspark ml、pmml,下面记录一下。

项目地址: https://github.com/owenliang/machine-learning 

sklearn LR分类

# -*- coding: utf-8 -*-
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
 
# GBDT算法
# from sklearn.ensemble import GradientBoostingClassifier
 
# 从官网下载数据
iris = load_iris()
 
# 随机拆分训练集与测试集
train_x, test_x, train_y, test_y = train_test_split(iris.data, iris.target, test_size = 0.2)
 
# 逻辑回归分类算法
lr = LogisticRegression()
 
# 训练模型
lr.fit(train_x, train_y)
 
# 预测
predict_y = lr.predict(test_x)
print(predict_y)
 
# 模型得分
score = lr.score(test_x, test_y)
print(score)
  • 利用train_test_split切分了训练集合和验证集合
  • fit训练了LR回归分类模型
  • predict预测了验证集合
  • score计算了预测模型的得分

spark LR分类

# -*- coding: utf-8 -*-
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from sklearn.datasets import load_iris
import pandas
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import  VectorAssembler
from pyspark.mllib.evaluation import BinaryClassificationMetrics
from pyspark.ml.feature import RFormula
 
# 配置spark客户端
conf = SparkConf().setAppName("lr_spark")
conf = conf.setMaster("local")
sc = SparkContext(conf = conf)
 
# 加载sklearn的训练数据
iris = load_iris()
# 特征矩阵
features = pandas.DataFrame(iris.data, columns = iris.feature_names)
# 目标矩阵
targets = pandas.DataFrame(iris.target, columns = ['Species'])
# 合并矩阵
merged = pandas.concat([features, targets], axis = 1)
 
# 创建SparkSession
sess = SparkSession(sc)
 
# 创建spark DataFrame
raw_df = sess.createDataFrame(merged)
 
# 提取特征与目标
fomula = RFormula(formula = 'Species ~ .')
raw_df = fomula.fit(raw_df).transform(raw_df)
 
# 拆分训练集和测试集
train_df, test_df = raw_df.randomSplit([0.8, 0.2])
 
# 创建LR分类器
lr = LogisticRegression()
 
# 训练
train_df.show()
model = lr.fit(train_df)
 
# 预测test集合
predict_df = model.transform(test_df)
 
# 对测试集做predict, 生成(预测分类, 正确分类)
def build_predict_target(row):
    return (float(row.prediction), float(row.Species))
 
predict_and_target_rdd = predict_df.rdd.map(build_predict_target)
 
# 统计模型效果
metrics = BinaryClassificationMetrics(predict_and_target_rdd)
print(metrics.areaUnderPR)
 
# 保存模型到磁盘
model.write().overwrite().save('./lr.model')
  • 利用pandas将原始数组转换成DataFrame矩阵
  • 利用concat将特征与目标矩阵按行连接
  • 利用SparkSession将本地的pandas.DataFrame上传到spark集群中,变成了spark中的分布式DataFrame
  • 利用RFormula将DataFrame中属于特征的列提取到features字段中,将目标提取到labal字段
  • 将数据随机切分成8:2的训练集合与测试集合
  • 利用spark的逻辑回归分类器进行分布式训练fit
  • 然后调用transform完成对测试集的预测,得到一个预测结果的DataFrame
  • 将预测结果DataFrame转换成rdd并运行map输出(预测分类,正确分类)
  • 利用spark的一个Metrics库,统计模型得分
  • 最后将训练好的LR模型保存到hdfs上的lr.model文件

train_df.show()打印出了经过RFormula特征提取后的DataFrame:

+-----------------+----------------+-----------------+----------------+-------+-----------------+-----+
|sepal length (cm)|sepal width (cm)|petal length (cm)|petal width (cm)|Species|         features|label|
+-----------------+----------------+-----------------+----------------+-------+-----------------+-----+
|              4.4|             3.2|              1.3|             0.2|      0|[4.4,3.2,1.3,0.2]|  0.0|
|              4.5|             2.3|              1.3|             0.3|      0|[4.5,2.3,1.3,0.3]|  0.0|
|              4.6|             3.1|              1.5|             0.2|      0|[4.6,3.1,1.5,0.2]|  0.0|
|              4.6|             3.2|              1.4|             0.2|      0|[4.6,3.2,1.4,0.2]|  0.0|
|              4.6|             3.6|              1.0|             0.2|      0|[4.6,3.6,1.0,0.2]|  0.0|
|              4.7|             3.2|              1.3|             0.2|      0|[4.7,3.2,1.3,0.2]|  0.0|
|              4.7|             3.2|              1.6|             0.2|      0|[4.7,3.2,1.6,0.2]|  0.0|
|              4.8|             3.0|              1.4|             0.1|      0|[4.8,3.0,1.4,0.1]|  0.0|
|              4.8|             3.0|              1.4|             0.3|      0|[4.8,3.0,1.4,0.3]|  0.0|
|              4.8|             3.1|              1.6|             0.2|      0|[4.8,3.1,1.6,0.2]|  0.0|
|              4.8|             3.4|              1.6|             0.2|      0|[4.8,3.4,1.6,0.2]|  0.0|
|              4.9|             2.4|              3.3|             1.0|      1|[4.9,2.4,3.3,1.0]|  1.0|
|              4.9|             2.5|              4.5|             1.7|      2|[4.9,2.5,4.5,1.7]|  2.0|
|              4.9|             3.0|              1.4|             0.2|      0|[4.9,3.0,1.4,0.2]|  0.0|
|              5.0|             2.0|              3.5|             1.0|      1|[5.0,2.0,3.5,1.0]|  1.0|
|              5.0|             2.3|              3.3|             1.0|      1|[5.0,2.3,3.3,1.0]|  1.0|
|              5.0|             3.0|              1.6|             0.2|      0|[5.0,3.0,1.6,0.2]|  0.0|
|              5.0|             3.2|              1.2|             0.2|      0|[5.0,3.2,1.2,0.2]|  0.0|
|              5.0|             3.3|              1.4|             0.2|      0|[5.0,3.3,1.4,0.2]|  0.0|
|              5.0|             3.4|              1.5|             0.2|      0|[5.0,3.4,1.5,0.2]|  0.0|
+-----------------+----------------+-----------------+----------------+-------+-----------------+-----+
only showing top 20 rows

可见4个特征被提取到了features字段,目标被提取到了labal字段。

其实无论对pandas还是spark来说,DataFrame都类似于一张 MYSQL 中的数据表,理解这一点非常重要。

spark ml导出PMML

PMML是预测模型的通用描述语言,简单的说就是用XML语法保存模型的一种标准规范,按照这个格式保存模型,其他编程语言也可以加载模型完成预测。

# -*- coding: utf-8 -*-
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from sklearn.datasets import load_iris
import pandas
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from pyspark2pmml import PMMLBuilder
from pyspark.ml.feature import RFormula
 
# 配置spark客户端
conf = SparkConf().setAppName("lr_spark").set("spark.jars", "./jpmml-sparkml-executable-1.4.5.jar") # 注意: 这里需要加载jpmml jar
conf = conf.setMaster("local")
sc = SparkContext(conf = conf)
 
# 加载sklearn的训练数据
iris = load_iris()
# 特征矩阵
features = pandas.DataFrame(iris.data, columns = iris.feature_names)
# 目标矩阵
targets = pandas.DataFrame(iris.target, columns = ['Species'])
# 合并矩阵
merged = pandas.concat([features, targets], axis = 1)
 
# 创建SparkSession
sess = SparkSession(sc)
 
# 创建spark DataFrame
raw_df = sess.createDataFrame(merged)
 
# 特征提取
fomula = RFormula(formula = 'Species ~ .')
 
# 创建LR分类器
lr = LogisticRegression()
 
# 流水线: 先提取特征, 再训练模型
pipeline = Pipeline(stages = [fomula, lr])
pipeline_model = pipeline.fit(raw_df)
 
# 导出PMML
pmmlBuilder = PMMLBuilder(sc, raw_df, pipeline_model)
pmmlBuilder.buildFile("lr.pmml")

PMML支持导出extract、transform、estimator的完整过程,即特征的提取、转换、模型都可以导出。

我们通过pipeline配置整个训练流程,这里我配置了先经过RFormula提取特征与目标,然后再交给LR模型训练。大家也可以再增加其他的流程,比如对特征做标准化,归一化等操作都可以。

经过pipeline.fit训练后得到了模型,这个模型里包含了提取、转换、训练的完整信息,可以交给PMML来导出到文件。

我们看一下PMML文件就明白了:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML xmlns="http://www.dmg.org/PMML-4_3" xmlns:data="http://jpmml.org/jpmml-model/InlineTable" version="4.3">
 <Header>
 <Application name="JPMML-SparkML" version="1.4.5"/>
 <Timestamp>2018-07-17T03:25:17Z</Timestamp>
 </Header>
 <DataDictionary>
 <DataField name="Species" optype="categorical" dataType="integer">
 <Value value="0"/>
 <Value value="1"/>
 <Value value="2"/>
 </DataField>
 <DataField name="sepal length (cm)" optype="continuous" dataType="double"/>
 <DataField name="sepal width (cm)" optype="continuous" dataType="double"/>
 <DataField name="petal length (cm)" optype="continuous" dataType="double"/>
 <DataField name="petal width (cm)" optype="continuous" dataType="double"/>
 </DataDictionary>
 <RegressionModel functionName="classification" normalizationMethod="softmax">
 <MiningSchema>
 <MiningField name="Species" usageType="target"/>
 <MiningField name="sepal length (cm)"/>
 <MiningField name="sepal width (cm)"/>
 <MiningField name="petal length (cm)"/>
 <MiningField name="petal width (cm)"/>
 </MiningSchema>
 <Output>
 <OutputField name="pmml(prediction)" optype="categorical" dataType="integer" feature="predictedValue"/>
 <OutputField name="prediction" optype="categorical" dataType="double" feature="transformedValue">
 <MapValues outputColumn="data:output">
 <FieldColumnPair field="pmml(prediction)" column="data:input"/>
 <InlineTable>
 <row>
 <data:input>0</data:input>
 <data:output>0</data:output>
 </row>
 <row>
 <data:input>1</data:input>
 <data:output>1</data:output>
 </row>
 <row>
 <data:input>2</data:input>
 <data:output>2</data:output>
 </row>
 </InlineTable>
 </MapValues>
 </OutputField>
 <OutputField name="probability(0)" optype="continuous" dataType="double" feature="probability" value="0"/>
 <OutputField name="probability(1)" optype="continuous" dataType="double" feature="probability" value="1"/>
 <OutputField name="probability(2)" optype="continuous" dataType="double" feature="probability" value="2"/>
 </Output>
 <RegressionTable intercept="2.0589260323395826" targetCategory="0">
 <NumericPredictor name="sepal length (cm)" coefficient="-9.3215388958028"/>
 <NumericPredictor name="sepal width (cm)" coefficient="40.62625783146442"/>
 <NumericPredictor name="petal length (cm)" coefficient="-11.78994187010167"/>
 <NumericPredictor name="petal width (cm)" coefficient="-26.527030223116284"/>
 </RegressionTable>
 <RegressionTable intercept="20.289599797446442" targetCategory="1">
 <NumericPredictor name="sepal length (cm)" coefficient="5.8933440030500135"/>
 <NumericPredictor name="sepal width (cm)" coefficient="-16.972682698035506"/>
 <NumericPredictor name="petal length (cm)" coefficient="1.1802982181289101"/>
 <NumericPredictor name="petal width (cm)" coefficient="4.120419403699187"/>
 </RegressionTable>
 <RegressionTable intercept="-22.348525829786027" targetCategory="2">
 <NumericPredictor name="sepal length (cm)" coefficient="3.428194892752785"/>
 <NumericPredictor name="sepal width (cm)" coefficient="-23.653575133428916"/>
 <NumericPredictor name="petal length (cm)" coefficient="10.60964365197276"/>
 <NumericPredictor name="petal width (cm)" coefficient="22.406610819417097"/>
 </RegressionTable>
 </RegressionModel>
</PMML>
  • DataDictionary描述了有哪些特征,特征排列的顺序是什么,目标是什么。
  • RegressionModel描述了回归分类算法的模型信息,可以看到每个分类的模型参数。

总结

关键记住2点:

  • DataFrame等价于mysql table,每一列有名字关联,需要参与训练的特征被提取到features字段,即特征向量。
  • PMML可以导出完整的提取、转换、预测模型,供其他语言加载使用(主要是JAVA)。

以上所述就是小编给大家介绍的《记录pyspark ml与pmml的用法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

编程卓越之道

编程卓越之道

Hyde R / 韩东海 / 电子工业出版社 / 2006-4-1 / 49.80

各位程序员一定希望自己编写的代码是能让老板赞赏、满意的代码;是能让客户乐意掏钱购买的代码;是能让使用者顺利使用的代码;是能让同行欣赏赞誉的代码;是能让自己引以为豪的卓越代码。本书作者为希望能编写出卓越代码的人提供了自己积累的关于卓越编程的真知灼见。它弥补了计算机科学和工程课程中被忽略的一个部分——底层细节,而这正是构建卓越代码的基石。具体内容包括:计算机数据表示法,二进制数学运算与位运算,内存组织......一起来看看 《编程卓越之道》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

html转js在线工具
html转js在线工具

html转js在线工具