Spark数据分析概念入门

栏目: 服务器 · 发布时间: 7年前

内容简介:在大数据的时代,数据的各种术语层出不穷,比如数据仓库、数据湖,还有比较热门的Hadoop、Spark,让人眼花缭乱。在这里,我们主要介绍的是Spark,从宏观的角度来介绍Spark到底是什么。我们将解决如下几个简单的问题:下面我们分别进行叙述。

在大数据的时代,数据的各种术语层出不穷,比如数据仓库、数据湖,还有比较热门的Hadoop、Spark,让人眼花缭乱。在这里,我们主要介绍的是Spark,从宏观的角度来介绍Spark到底是什么。

我们将解决如下几个简单的问题:

  • Spark是什么
  • Spark的组成
  • Spark的用户和用途

下面我们分别进行叙述。

Spark是什么

首先,我们开始第1个简单的问题,Spark是什么?

Spark是什么,Spark是1个用来实现 快速通用 的集群计算的平台。

在速度方面,Spark扩展了广泛使用的MapReduce计算模型,高效地支持更多计算模型,包括交互式查询和流处理,并能够在内存中进行计算。

总的来说,Spark适用于各种各样原先需要在多种不同的分布式平台下的场景,包括批处理、交互式查询、流处理。并通过1个统一的框架支持这些不同的计算,大大减轻了原先需要对各种平台分别管理的负担。

另外,Spark还提供了丰富的接口(支持 PythonJava 、Scala)和程序库外,还能与其他大数据 工具 密切配合使用,例如运行在Hadoop集群上。

Spark的组成

Spark项目包含多个紧密集成的组件,其核心是1个可以对很多计算任务、多个工作机器或计算集群上的应用进行调度、分发以及监控的计算引擎。

其各个组件主要包括:

  • Spark Core,Spark的基本功能,包括任务调度、内存管理、错误恢复与存储系统交互等模块,另外还有RDD(对弹性分布式数据集,resilient distributed dataset)的API定义
  • Spark SQL,Spark操作结构化的程序包,用于数据的查询
  • Spark Streaming,提供对实时数据进行流式计算的组件
  • MLib,提供常见机器学习功能的程序库
  • GraphX,进行并行图计算的程序库
  • 集群管理器,提供Hadoop YARN,Apache Mesos的支持

Spark的用户和用途

Spark主要面向两大目标人群:

  • 数据科学家
  • 工程师

可以用于以下两方面:

  • 数据科学,更多的主要是数据分析领域,例如统计、机器学习建模、数据转换
  • 数据处理,通过丰富的接口来快速实现常见的任务以及应用的监视、审查和性能调优

参考书籍:

《Learning Spark:Lightning-fast Data Analysis》P1-6

以上所述就是小编给大家介绍的《Spark数据分析概念入门》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Learn Python 3 the Hard Way

Learn Python 3 the Hard Way

Zed A. Shaw / Addison / 2017-7-7 / USD 30.74

You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring t......一起来看看 《Learn Python 3 the Hard Way》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换