Spark堆内存溢出解决记录

栏目: 服务器 · 发布时间: 6年前

最近的工作有很大一部分是在做用户画像。

画像读取的维度bitmap动辄几百MB,甚至存在部分GB级别的。而我们的Yarn集群规模比较小,内存总计只有100多GB。开发调试时遇到最多的问题除了Task not serializable就是heap out of memeory了。

我们使用的Spark版本是1.6.3。yarn集群使用的jdk版本是1.7。

如何解决堆内存溢出是最大的难题 。

这时的分析受惠于这几个jvm虚拟机参数“-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps ”很多。根据这些参数可以看到内存使用的详情。比如我这里曾遇到过新生代内存使用率达到了99%,而老年代使用率只有20%多的情况,此时需要适当调整新生代和老年代的比例。另外还尝试过使用“-XX:+HeapDumpOnOutOfMemoryError ”获取溢出时的内存快照,如果找到快照的话就可以找出是哪些对象占用了最多的内存,也有很大的几率定位到发生溢出的位置。可惜运维没有找到快照。

另一种情况出现在代码上。比如从ByteWritable获取字节数组时有两个API可用,一个是copyBytes(),一个是getBytes(),使用copyBytes可以把指定区间内的字节数组copy出来,但是这样一来占用的内存肯定是要double了。又比如该使用broadcast变量的时候使用了普通变量,该使用mapPartitions的时候使用了map。写代码的时候每调用一个方法都应该考虑一下相关的开销。

我这里遇到的内存溢出一般来说就是最简单的情况——内存是真的不够用了。某些需要加载到内存里的bitmap体量实在太大,因为整体的资源不足,同时又有其他的任务在跑,所以不能过分上调executor内存。这样能做的只有限制executor的数量,才能适当增加executor的内存。并且为了避免一个executor内可能会出现多个过大bitmap同时并行运算的问题还得限制某些stage的partition数量。更极端的情况就得限制每个executor的core的数量。

大体上就是这样。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Ant Colony Optimization

Ant Colony Optimization

Marco Dorigo、Thomas Stützle / A Bradford Book / 2004-6-4 / USD 45.00

The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial opti......一起来看看 《Ant Colony Optimization》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器