关于Cassandra的分段Repair

栏目: 数据库 · 发布时间: 6年前

为什么要Repair

Repair对Cassandra集群是极为重要的,因为频繁的数据删除以及机器Down掉(尽管有Hinted Handoff机制)都会可能导致数据不一致(多个副本之间)。在Cassandra日常维护中,我们要例行对集群进行Repair操作,使用nodetool的Repair命令。

Repair原理

Cassandra在Repair的操作分两个步骤:

第一: 创建Merkle tree

Merkle tree是一个二叉树,二叉树最底层是要比较的数据块的hash值,父节点是两个子节点的hash值(=hash(hash1+hash2))。二叉树的高度是15,也就是说最底层有2^15=32768个叶子节点,对应有32768个数据块,如下图所示。

关于Cassandra的分段Repair

计算Merkle Tree的过程需要依赖磁盘IO。为了不影响业务,你可以限制压缩阈值(nodetool setcompactionthroughput ),因为这个过程被称作validation compaction,体现在压缩任务里。

第二:比较Merkle Tree,找出差异进行数据传输。

为每个副本创建Merkle Tree以后,副本之间只要通过比较最顶端的hash是否一致,然后一层层比较下来,就可以找到不一致的那个数据库,然后进行数据传输进行修复即可。

合理分段Repair

上面的修复过程有个问题,就是Merkle Tree是存储在内存里的,所以Cassandra对高度进行了限制,只能有15层,数据只能分为32768数据块。那么这就限制了Merkle Tree的精度,假设一个节点有10万个分区key,每个数据块大约有30个,假设其中有1条数据不一致,那至少要传输30个分区key的数据。这是很浪费集群带宽和修复时间的(修复需要在 gc _grace_seconds周期内完成,防止删掉的数据又出现)

Cassandra的nodetool repair提供了分段Repair的参数,-st -et分别表示token段的范围,假设我们每次repair的数据正好有32768个分区key,那么我们就可以进行精确的修复,减少不必要的传输。当我们把所有的token小段repair完毕,就相当与我们把所有数据进行了repair。

那么问题来了,怎么样对token段进行细分呢?

每个cassandra节点都有个表叫 system. size _estimates(好像是从2.1.4版本开始),在里面记录了每个表在每个token段上大约有多少分区key(partitions_count)以及每个分区key的大小(mean_partition_size)

CREATE TABLE system.size_estimates (

keyspace_name text,

table_name text,

range_start text,

range_end text,

mean_partition_size bigint,

partitions_count bigint,

PRIMARY KEY (keyspace_name, table_name, range_start, range_end)

)

你可以遍历所有的token段进行repair,遇到分区key较多的token段(大于32768),继续细分成多个子token段进行repair。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

我知道他想看什么

我知道他想看什么

沙建军 / 中信出版社 / 2018-1 / 48.00

社交媒体迅速发展、信息快速迭代、时间碎片化;大数据、智能终端、物联网横空出世;移动支付、网红经济和传统营销失效,这些都让这个时代的媒体、内容、渠道、产品之间的边界越来越模糊,也从根本上改变了营销的逻辑,内容营销从热词变成趋势,变成营销的底层思维。未来一切都是媒体,形式也是内容。 本书作者通过对国内外36个内容营销的新近案例的故事化描述和透彻分析,提出“组织媒介化”“营销内容化”“内容情趣化”......一起来看看 《我知道他想看什么》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

URL 编码/解码
URL 编码/解码

URL 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具