内容简介:最近利用周末时间来学习Rust编程,发现新发布的1.26版本,带来了impl Trait is now stable allowing you to have abstract types in returns or in function parameters. e.g. fn foo() -> impl Iterator
最近利用周末时间来学习Rust编程,发现新发布的1.26版本,带来了
impl Trait
,一时对它的写法难以理解,今天又找点资料再温习一下。
impl Trait is now stable allowing you to have abstract types in returns or in function parameters. e.g. fn foo() -> impl Iterator
既存类型
impl Trait
是对
既存类型(Existential types)
的支持,那什么是既存类型?
Existential types are frequently used in connection with record types to represent modules and abstract data types, due to their ability to separate implementation from interface. For example, the type “T = ∃X { a: X; f: (X → int); }” describes a module interface that has a data member named a of type X and a function named f that takes a parameter of the same type X and returns an integer. This could be implemented in different ways; for example: intT = { a: int; f: (int → int); } floatT = { a: float; f: (float → int); } These types are both subtypes of the more general existential type T and correspond to concrete implementation types, so any value of one of these types is a value of type T. Given a value “t” of type “T”, we know that “t.f(t.a)” is well-typed, regardless of what the abstract type X is. This gives flexibility for choosing types suited to a particular implementation while clients that use only values of the interface type—the existential type—are isolated from these choices. In general it’s impossible for the typechecker to infer which existential type a given module belongs to. In the above example intT { a: int; f: (int → int); } could also have the type ∃X { a: X; f: (int → int); }. The simplest solution is to annotate every module with its intended type, e.g.: intT = { a: int; f: (int → int); } as ∃X { a: X; f: (X → int); }
从上面wiki的介绍,既存类型相对还是比较容易理解,既存类型早已发明,有着距今约30年的历史。既存类型是用来表达一种抽象类型,它连接record types(如rust中的struct),其实现与接口分离。说白一点,有点像 Java 中interface或 GO 的Interface。
在Rust中,我们可以采用 impl Trait
指定函数的返回类型,而不必指出具体是哪一种类型。例如:
fn foo() -> impl Trait { // ... }
如果是这样,为什么Rust不直接设计为如下,Trait像Java8中interface或GO的Interface,函数返回interface:
fn foo() -> Trait { // ... }
遗憾地是,上面的写法在Rust都不可能编译通过,因为在Rust变量lifetime之说,返回值的lifetime不能悬空,那只能变成这种写法
fn foo3() -> Box<Trait> { Box::new(5) as Box<Trait> }
这样写是不是很繁琐,不过,使用Box impl Trait
确保了静态分配。这种方法使foo仅能返回同样的类型。
trait Trait { fn method(&self); } // 表示类型T实现了Trait impl<T: Sized> Trait for T { fn method(&self) { } } fn new_foo1() -> impl Trait { 5 // 返回一个i32类型的值 } fn new_foo2() -> impl Trait { 5.0f32 // 返回一个f32类型的值 }
在定义返回闭包的函数时,新的 impl Trait
语法也可以如下使用,闭包函数实现了特性Fn:
fn foo() -> impl Fn(i32) -> i32 { |x| x + 1 }
另外, impl Trait
语法还可以用于替代泛型类型的声明,如下例所示,虽然在这种情况下,它定义了一个通用类型,而不是存在类型:
// 之前 fn foo<T: Trait>(x: T) { // 之后 fn foo(x: impl Trait) {
从上面来看, impl Trait
其实就是一种语法糖而已,在其中语言中司空见惯的用法,由于在Rust的lifetime管理,函数不支持返回抽象类型,简单问题复杂化了。
具体应用
actix是rust实现的一个web框架,它很快就使用到 impl Trait
,如下所示:
[derive(Serialize)] struct Measurement { temperature: f32, } fn hello_world() -> impl Responder { "Hello World!" } fn greet(req: HttpRequest) -> impl Responder { let to = req.match_info().get("name").unwrap_or("World"); format!("Hello {}!", to) } fn current_temperature(_req: HttpRequest) -> impl Responder { Json(Measurement { temperature: 42.3 }) }
其中Responder是一个Trait,它定义如下:
// https://github.com/actix/actix-web/blob/master/src/handler.rs#L24 pub trait Responder { /// The associated item which can be returned. type Item: Into<AsyncResult<HttpResponse>>; /// The associated error which can be returned. type Error: Into<Error>; /// Convert itself to `AsyncResult` or `Error`. fn respond_to<S: 'static>( self, req: &HttpRequest<S>, ) -> Result<Self::Item, Self::Error>;
Json是一个struct,它的实现在json.rs文件,也是实现了Responder Trait,在respond_to方法中对T进行了序列化,并生成Result对象
// https://github.com/actix/actix-web/blob/master/src/json.rs#L119 impl<T: Serialize> Responder for Json<T> { type Item = HttpResponse; type Error = Error; fn respond_to<S>(self, req: &HttpRequest<S>) -> Result<HttpResponse, Error> { let body = serde_json::to_string(&self.0)?; Ok(req .build_response(StatusCode::OK) .content_type("application/json") .body(body)) } }
为什么直接返回”Hello World!“与format!(“Hello {}!”, to)也行,它是怎么做到,原因在于在handler.rs中AsyncResult实现From Trait,支持把任一类型转成AsyncResult。
https://github.com/actix/actix-web/blob/master/src/handler.rs#L292 impl<T> From<T> for AsyncResult<T> { #[inline] fn from(resp: T) -> AsyncResult<T> { AsyncResult(Some(AsyncResultItem::Ok(resp))) } }
参考:
[1] https://www.infoq.com/news/2018/05/rust-1.26-existential-types
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 理解 TypeScript 类型拓宽
- 理解 TypeScript 类型收窄
- [译]理解 iOS 异常类型
- 理解JavaScript变量和类型
- 一分钟理解 Java 包装类型
- 理解 MySQL 中的数字类型
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
构建之法(第三版)
邹欣 / 人民邮电出版社 / 2017-6 / 69.00元
软件工程牵涉的范围很广, 同时也是一般院校的同学反映比较空洞乏味的课程。 但是,软件工程 的技术对于投身 IT 产业的学生来说是非常重要的。作者有在世界一流软件企业 20 年的一线软件开 发经验,他在数所高校进行了多年的软件工程教学实践,总结出了在 16 周的时间内让同学们通过 “做 中学 (Learning By Doing)” 掌握实用的软件工程技术的教学计划,并得到高校师生的积极反馈。在此 ......一起来看看 《构建之法(第三版)》 这本书的介绍吧!