阿里开源自研语音识别模型 DFSMN,准确率高达96.04%

栏目: IT资讯 · 发布时间: 7年前

内容简介:近日,阿里巴巴达摩院机器智能实验室开源了新一代语音识别模型DFSMN,将全球语音识别准确率纪录提高至96.04%。这一数据测试基于世界最大的免费语音识别数据库LibriSpeech。 对比目前业界使用最为广泛的LSTM模型,...

近日,阿里巴巴达摩院机器智能实验室开源了新一代语音识别模型DFSMN,将全球语音识别准确率纪录提高至96.04%。这一数据测试基于世界最大的免费语音识别数据库LibriSpeech。

对比目前业界使用最为广泛的LSTM模型,DFSMN模型训练速度更快、识别准确率更高。采用全新DFSMN模型的智能音响或智能家居设备,相比前代技术深度学习训练速度提到了3倍,语音识别速度提高了2倍。

著名语音识别专家,西北工业大学教授谢磊表示:“阿里此次开源的DFSMN模型,在语音识别准确率上的稳定提升是突破性的,是近年来深度学习在语音识别领域最具代表性的成果之一,对全球学术界和AI技术应用都有巨大影响。”

语音识别技术一直都是人机交互技术的重要组成部分。有了语音识别技术,机器就可以像人类一样听懂说话,进而能够思考、理解和反馈。近几年随着深度学习技术的使用,基于深度神经网络的语音识别系统性能获得了极大的提升,开始走向实用化。基于语音识别的语音输入、语音转写、语音检索和语音翻译等技术得到了广泛的应用。

目前主流的语音识别系统普遍采用基于深度神经网络和隐马尔可夫(Deep Neural Networks-Hidden Markov Model,DNN-HMM)的声学模型,其模型结构如图 1所示。声学模型的输入是传统的语音波形经过加窗、分帧,然后提取出来的频谱特征,如 PLP, MFCC 和 FBK等。而模型的输出一般采用不同粒度的声学建模单元,例如单音素 (mono-phone)、单音素状态、绑定的音素状态 (tri-phonestate) 等。从输入到输出之间可以采用不同的神经网络结构,将输入的声学特征映射得到不同输出建模单元的后验概率,然后再结合HMM进行解码得到最终的识别结果。

项目地址:https://github.com/tramphero/kaldi

详情见阿里技术公众号。


【声明】文章转载自:开源中国社区 [http://www.oschina.net]


以上所述就是小编给大家介绍的《阿里开源自研语音识别模型 DFSMN,准确率高达96.04%》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

PHP 5权威编程

PHP 5权威编程

(美)古曼兹等 / 简张桂 / 电子工业出版社 / 2007-12 / 90.00元

《BRUCE PERENS开源系列丛书•PHP 5权威编程》为大家全面介绍了PHP 5中的新功能、面向对象编程方法及设计模式,还分析阐述了PHP5中新的数据库连接处理、错误处理和XML处理等机制。希望能够帮助读者系统了解、熟练掌握PHP,最大程度地挖掘:PHP的潜力,以更低的成本搭建更加稳健、高效的PHP应用。 近年来,随着使用PHP的大流量网站逐渐增加,企业在使用PHP的时候开始面临新的问......一起来看看 《PHP 5权威编程》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具