基于开源代码的人工智能机器人 ELF OpenGo 击败顶级人类玩家

栏目: IT资讯 · 发布时间: 6年前

内容简介:最近在Facebook的F8开发者大会上宣布,ELF OpenGo机器人在赢得了最近与前30名人类玩家对阵的14场比赛后获得了专业地位。 为了解决复杂的游戏问题和AI研究工作的民主化,Facebook的人工智能研究实验室(FAIR)团队...

最近在Facebook的F8开发者大会上宣布,ELF OpenGo机器人在赢得了最近与前30名人类玩家对阵的14场比赛后获得了专业地位。

为了解决复杂的游戏问题和AI研究工作的民主化,Facebook的人工智能研究实验室(FAIR)团队创建了ELF:一个用于游戏研究的广泛,轻量级和灵活的平台。ELF为研究人员提供了在各种游戏环境中测试其算法的机会,包括棋盘游戏,Atari游戏(通过Arcade学习环境)以及定制的实时策略游戏。它运行在支持GPU的笔记本电脑上,也支持在更复杂的游戏环境中训练AI,例如实时策略游戏,一天内仅使用6个CPU和一个GPU。

“我们向DeepMind的朋友们致敬,感谢他们做出了令人敬畏的工作,”Facebook首席技术官Mike Schroepfer说,“但是我们想知道:是否有一些未解决的问题?你还可以将这些 工具 应用于其他领域。“正如Facebook在今天的博客文章中所指出的那样。Facebook还开源了它的机器人。“为了让这项工作对全世界的AI研究人员都具有重现性和可用性,我们创建了一款名为ELF OpenGo的开源 Go 机器人,该机器人的性能足以回答AlphaGo未回答的一些关键问题,”该团队说。

ELF平台嵌入了实时策略引擎和称为Mini-RTS的环境。它的效率很高,就像游戏环境在Macbook Pro上每个核心每秒运行40,000帧一样。
它获得了实时策略游戏的主要动态。这两个玩家都会收集资源,建造设施,探索未知的领土(玩家看不见的地形),并试图控制地图上的区域。

有趣的是,引擎具有促进人工智能研究的特性:完美的保存/加载/重放,完全访问其内部游戏状态,多种内置的基于规则的AI,调试可视化以及人机界面等。简而言之,在Mini-RTS上接受培训的人工智能已经显示出很有希望的结果,70%的时间内击败了内置的AI代理,表明可以训练AI完成任务,并在相对复杂的战略环境中确定优先级。

通过ELF平台,团队正在开展研究,专注于帮助计算机开发处理指数行动空间,长期延迟奖励和不完整信息的方法。


【声明】文章转载自:开源中国社区 [http://www.oschina.net]


以上所述就是小编给大家介绍的《基于开源代码的人工智能机器人 ELF OpenGo 击败顶级人类玩家》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

沸騰15年

沸騰15年

林軍 / 商周出版 / 2010年09月19日 / NTD:430元

從一九九五年到二○○九年,中國互聯網崛起、發展和壯大。 在短短十五年間 產生了十五家市值超過十億的上市公司 這些前仆後繼的先行者 不但用網際網路創造了歷史,也改寫了自己的財富路徑。 這本關於中國互聯網產業歷史的書,脈絡清晰、生動鮮明地把一大批創業者的形象和他們的動人故事呈現在讀者眼前,值得一讀。 ——中國互聯網協會理事長、中國科協副主席 胡啟?? 林軍這本......一起来看看 《沸騰15年》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

html转js在线工具
html转js在线工具

html转js在线工具