重现 AlphaGoZero 风采,Facebook 开源 ELF OpenGo

栏目: IT资讯 · 发布时间: 6年前

内容简介:近日,Facebook AI Research(FAIR)在其官方博客宣布开源他们开发的曾打败专业围棋棋手的 AI 围棋机器人 ELF OpenGo,包括源代码和训练好的模型。 开发团队表示,受 DeepMind 的启发,他们在今年早些时候启动了...

近日,Facebook AI Research(FAIR)在其官方博客宣布开源他们开发的曾打败专业围棋棋手的 AI 围棋机器人 ELF OpenGo,包括源代码和训练好的模型。

重现 AlphaGoZero 风采,Facebook 开源 ELF OpenGo

开发团队表示,受 DeepMind 的启发,他们在今年早些时候启动了一项使用 FAIR 的可扩展、轻量级框架 ELF 进行强化学习研究的工作,希望能重现与 AlphaGoZero 最接近的结果,最终创建一个能自学围棋并达到人类职业棋手或更高水平的开源系统。

ELF OpenGo 是他们用两千块 GPU 训练约两到三周后得到的围棋 AI ,目前已成功战胜其他开源机器人和人类棋手。ELF OpenGo 在 4 月 25 日曾与目前公开可用的最强大的围棋机器人 LeelaZero 进行了 200 场比赛,最终以 198 胜 2 负 的成绩赢得胜利,而且是在使用默认设置的情况下。此外,OpenGo 还和世界排名前 30 的四位职业围棋棋手(金志锡,申真谞,朴永训及崔哲瀚)进行对弈,并以 14:0 的成绩赢得了所有的比赛。在比赛中 OpenGo 使用单块 GPU 每步 50 秒的搜索时间(每步搜索 8 万个局面),而人类棋手并没有限制下棋思考的时间。

重现 AlphaGoZero 风采,Facebook 开源 ELF OpenGo

开发团队表示,此次开放训练代码、测试代码和模型,是希望激励他人思考这项技术的新应用和研究方向,期待社区能够带来更进一步的探索。同时也是借此机会推广一下 ELF 平台和 PyTorch 深度学习框架,希望更多的人能使用和完善它。


【声明】文章转载自:开源中国社区 [http://www.oschina.net]


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深入浅出Tapestry

深入浅出Tapestry

董黎伟 / 电子工业出版社 / 2007-3 / 49.0

本书以循序渐进的方式,从Tapestry框架技术的基本概念入手,讲解Tapestry框架在J2EE Web应用程序中的整体架构实现。使读者在学习如何使用Tapestry框架技术的同时,还能够获得在J2EE Web应用程序中应用Tapestry框架的先进经验。 本书详细介绍了Hivemind框架的原理与应用,使读者不但可以通过Hivemind来重构Tapestry的官方实现,还可以使用Hive......一起来看看 《深入浅出Tapestry》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具