内容简介:几乎每个C程序中都会使用到哈希表。鉴于C语言只允许使用整数作为数组的键名,PHP 设计了哈希表,将字符串的键名通过哈希算法映射到大小有限的数组中。这样无法避免的会产生碰撞,PHP 使用了链表解决这个问题。
简介
几乎每个C程序中都会使用到哈希表。鉴于 C语言 只允许使用整数作为数组的键名,PHP 设计了哈希表,将字符串的键名通过哈希算法映射到大小有限的数组中。这样无法避免的会产生碰撞,PHP 使用了链表解决这个问题。
众多哈希表的实现方式,无一完美。每种设计都着眼于某一个侧重点,有的减少了 CPU 使用率,有的更合理地使用内存,有的则能够支持线程级的扩展。
实现哈希表的方式之所以存在多样性,是因为每种实现方式都只能在各自的关注点上提升,而无法面面俱到。
数据结构
开始介绍之前,我们需要事先声明一些事情:
- 哈希表的键名可能是字符串或者是整数。当是字符串时,我们声明类型为
zend_string
;当是整数时,声明为zend_ulong
。 - 哈希表的顺序遵循表内元素的插入顺序。
- 哈希表的容量是自动伸缩的。
- 在内部,哈希表的容量总是2的倍数。
- 哈希表中每个元素一定是
zval
类型的数据。
以下是 HashTable 的结构体:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
struct _zend_array { zend_refcounted_h gc; union { struct { ZEND_ENDIAN_LOHI_4( zend_uchar flags, zend_uchar nApplyCount, zend_uchar nIteratorsCount, zend_uchar reserve) } v; uint32_t flags; } u; uint32_t nTableMask; Bucket *arData; uint32_t nNumUsed; uint32_t nNumOfElements; uint32_t nTableSize; uint32_t nInternalPointer; zend_long nNextFreeElement; dtor_func_t pDestructor; }; |
这个结构体占56个字节。
其中最重要的字段是 arData
,它是一个指向 Bucket
类型数据的指针,Bucket
结构定义如下:
1 2 3 4 5 |
typedef struct _Bucket { zval val; zend_ulong h; /* hash value (or numeric index) */ zend_string *key; /* string key or NULL for numerics */ } Bucket; |
Bucket
中不再使用指向一个 zval
类型数据的指针,而是直接使用数据本身。因为在 PHP 7 中,zval
不再使用堆分配,因为需要堆分配的数据会作为 zval
结构中的一个指针存储。(比如 PHP 的字符串)。
下面是 arData
在内存中存储的结构:
我们注意到所有的Bucket都是按顺序存放的。
插入元素
PHP 会保证数组的元素按照插入的顺序存储。这样当使用 foreach
循环数组时,能够按照插入的顺序遍历。假设我们有这样的数组:
1 2 3 4 5 6 7 8 9 10 11 12 |
$a = [9 => "foo", 2 => 42, []]; var_dump($a); array(3) { [9]=> string(3) "foo" [2]=> int(42) [10]=> array(0) { } } |
所有的数据在内存上都是相邻的。
这样做,处理哈希表的迭代器的逻辑就变得相当简单。只需要直接遍历 arData
数组即可。遍历内存中相邻的数据,将会极大的利用 CPU 缓存。因为 CPU 缓存能够读取到整个 arData
的数据,访问每个元素将在微妙级。
1 2 3 4 5 6 7 8 9 |
size_t i; Bucket p; zval val; for (i=0; i < ht->nTableSize; i++) { p = ht->arData[i]; val = p.val; /* do something with val */ } |
如你所见,数据被顺序存放到 arData
中。为了实现这样的结构,我们需要知道下一个可用的节点的位置。这个位置保存在数组结构体中的 nNumUsed
字段中。
每当添加一个新的数据时,我们保存后,会执行 ht->nNumUsed++
。当 nNumUsed
值到达哈希表所有元素的最大值(nNumOfElements
)时,会触发“压缩或者扩容”的算法。
以下是向哈希表插入元素的简单实现示例:
1 2 3 4 5 6 7 8 |
idx = ht->nNumUsed++; /* take the next avalaible slot number */ ht->nNumOfElements++; /* increment number of elements */ /* ... */ p = ht->arData + idx; /* Get the bucket in that slot from arData */ p->key = key; /* Affect it the key we want to insert at */ /* ... */ p->h = h = ZSTR_H(key); /* save the hash of the current key into the bucket */ ZVAL_COPY_VALUE(&p->val, pData); /* Copy the value into the bucket's value : add operation */ |
我们可以看到,插入时只会在 arData
数组的结尾插入,而不会填充已经被删除的节点。
删除元素
当删除哈希表中的一项元素时,哈希表不会自动伸缩实际存储的数据空间,而是设置了一个值为 UNDEF 的 zval
,表示当前节点已经被删除。
如下图所示:
因此,在循环数组元素时,需要特殊判断空节点:
1 2 3 4 5 6 7 8 9 10 11 12 |
size_t i; Bucket p; zval val; for (i=0; i < ht->nTableSize; i++) { p = ht->arData[i]; val = p.val; if (Z_TYPE(val) == IS_UNDEF) { /* empty hole ? */ continue; /* skip it */ } /* do something with val */ } |
即使是一个十分巨大的哈希表,循环每个节点并跳过那些删除的节点也是非常快速的,这得益于 arData
的节点在内存中存放的位置总是相邻的。
哈希定位元素
当我们得到一个字符串的键名,我们必须使用哈希算法计算得到哈希后的值,并且能够通过哈希值索引找到 arData
中对应的那个元素。
我们并不能直接使用哈希后的值作为 arData
数组的索引,因为这样就无法保证元素按照插入顺序存储。
举个例子:如果我插入的键名先是 foo,然后是 bar,假设 foo 哈希后的结果是5,而 bar 哈希后的结果是3。如果我们将 foo 存在 arData[5]
,而 bar 存在 arData[3]
,这意味着 bar 元素要在 foo 元素的前面,这和我们插入的顺序正好是相反的。
所以,当我们通过算法哈希了键名后,我们需要一张 转换表,转换表保存了哈希后的结果与实际存储的节点的映射关系。
这里在设计的时候取了个巧:将转换表存储以 arData
起始指针为起点做镜面映射存储。这样,我们不需要额外的空间存储,在分配 arData
空间的同时也分配了转换表。
以下是有8个元素的哈希表 + 转换表的数据结构:
现在,当我们要访问 foo 所指的元素时,通过哈希算法得到值后按照哈希表分配的元素大小做取模,就能得到我们在转换表中存储的节点索引值。
如我们所见,转换表中的节点的索引与数组数据元素的节点索引是相反数的关系,nTableMask
等于哈希表大小的负数值,通过取模我们就能得到0到-7之间的数,从而定位到我们所需元素所在的索引值。综上,我们为 arData
分配存储空间时,需要使用 tablesize * sizeof(bucket) + tablesize * sizeof(uint32) 的计算方式计算存储空间大小。
在源码里也清晰的划分了两个区域:
1 2 3 4 5 6 7 |
#define HT_HASH_SIZE(nTableMask) (((size_t)(uint32_t)-(int32_t)(nTableMask)) * sizeof(uint32_t)) #define HT_DATA_SIZE(nTableSize) ((size_t)(nTableSize) * sizeof(Bucket)) #define HT_SIZE_EX(nTableSize, nTableMask) (HT_DATA_SIZE((nTableSize)) + HT_HASH_SIZE((nTableMask))) #define HT_SIZE(ht) HT_SIZE_EX((ht)->nTableSize, (ht)->nTableMask) Bucket *arData; arData = emalloc(HT_SIZE(ht)); /* now alloc this */ |
我们将宏替换的结果展开:
1 |
(((size_t)(((ht)->nTableSize)) * sizeof(Bucket)) + (((size_t)(uint32_t)-(int32_t)(((ht)->nTableMask))) * sizeof(uint32_t))) |
碰撞冲突
接下来我们看看如何解决哈希表的碰撞冲突问题。哈希表的键名可能会被哈希到同一个节点。所以,当我们访问到转换后的节点,我们需要对比键名是否我们查找的。如果不是,我们将通过 zval.u2.next
字段读取链表上的下一个数据。
注意这里的链表结构并没像传统链表一样在在内存中分散存储。我们直接读取 arData
整个数组,而不是通过堆(heap)获取内存地址分散的指针。
这是 PHP7 性能提升的一个重要点。数据局部性让 CPU 不必经常访问缓慢的主存储,而是直接从 CPU 的 L1 缓存中读取到所有的数据。
所以,我们看到向哈希表添加一个元素是这样操作的:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
idx = ht->nNumUsed++; ht->nNumOfElements++; if (ht->nInternalPointer == HT_INVALID_IDX) { ht->nInternalPointer = idx; } zend_hash_iterators_update(ht, HT_INVALID_IDX, idx); p = ht->arData + idx; p->key = key; if (!ZSTR_IS_INTERNED(key)) { zend_string_addref(key); ht->u.flags &= ~HASH_FLAG_STATIC_KEYS; zend_string_hash_val(key); } p->h = h = ZSTR_H(key); ZVAL_COPY_VALUE(&p->val, pData); nIndex = h | ht->nTableMask; Z_NEXT(p->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx); |
同样的规则也适用于删除元素:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
#define HT_HASH_TO_BUCKET_EX(data, idx) ((data) + (idx)) #define HT_HASH_TO_BUCKET(ht, idx) HT_HASH_TO_BUCKET_EX((ht)->arData, idx) h = zend_string_hash_val(key); /* get the hash from the key (assuming string key here) */ nIndex = h | ht->nTableMask; /* get the translation table index */ idx = HT_HASH(ht, nIndex); /* Get the slot corresponding to that translation index */ while (idx != HT_INVALID_IDX) { /* If there is a corresponding slot */ p = HT_HASH_TO_BUCKET(ht, idx); /* Get the bucket from that slot */ if ((p->key == key) || /* Is it the right bucket ? same key pointer ? */ (p->h == h && /* ... or same hash */ p->key && /* and a key (string key based) */ ZSTR_LEN(p->key) == ZSTR_LEN(key) && /* and same key length */ memcmp(ZSTR_VAL(p->key), ZSTR_VAL(key), ZSTR_LEN(key)) == 0)) { /* and same key content ? */ _zend_hash_del_el_ex(ht, idx, p, prev); /* that's us ! delete us */ return SUCCESS; } prev = p; idx = Z_NEXT(p->val); /* get the next corresponding slot from current one */ } return FAILURE; |
转换表和哈希表的初始化
HT_INVALID_IDX
作为一个特殊的标记,在转换表中表示:对应的数据节点没有有效的数据,直接跳过。
哈希表之所以能极大地减少那些创建时就是空值的数组的开销,得益于他的两步的初始化过程。当新的哈希表被创建时,我们只创建两个转换表节点,并且都赋予 HT_INVALID_IDX
标记。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
#define HT_MIN_MASK ((uint32_t) -2) #define HT_HASH_SIZE(nTableMask) (((size_t)(uint32_t)-(int32_t)(nTableMask)) * sizeof(uint32_t)) #define HT_SET_DATA_ADDR(ht, ptr) do { (ht)->arData = (Bucket*)(((char*)(ptr)) + HT_HASH_SIZE((ht)->nTableMask)); } while (0) static const uint32_t uninitialized_bucket[-HT_MIN_MASK] = {HT_INVALID_IDX, HT_INVALID_IDX}; /* hash lazy init */ ZEND_API void ZEND_FASTCALL _zend_hash_init(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, zend_bool persistent ZEND_FILE_LINE_DC) { /* ... */ ht->nTableSize = zend_hash_check_size(nSize); ht->nTableMask = HT_MIN_MASK; HT_SET_DATA_ADDR(ht, &uninitialized_bucket); ht->nNumUsed = 0; ht->nNumOfElements = 0; } |
注意到这里不需要使用堆分配内存,而是使用静态的内存区域,这样更轻量。
然后,当第一个元素插入时,我们会完整的初始化哈希表,这时我们才创建所需的转换表的空间(如果不确定数组大小,则默认是8个元素)。这时,我们将使用堆分配内存。
1 2 3 4 5 6 |
#define HT_HASH_EX(data, idx) ((uint32_t*)(data))[(int32_t)(idx)] #define HT_HASH(ht, idx) HT_HASH_EX((ht)->arData, idx) (ht)->nTableMask = -(ht)->nTableSize; HT_SET_DATA_ADDR(ht, pemalloc(HT_SIZE(ht), (ht)->u.flags & HASH_FLAG_PERSISTENT)); memset(&HT_HASH(ht, (ht)->nTableMask), HT_INVALID_IDX, HT_HASH_SIZE((ht)->nTableMask)) |
HT_HASH
宏能够使用负数偏移量访问转换表中的节点。哈希表的掩码总是负数,因为转换表的节点的索引值是 arData
数组的相反数。这才是C语言的编程之美:你可以创建无数的节点,并且不需要关心内存访问的性能问题。
以下是一个延迟初始化的哈希表结构:
哈希表的碎片化、重组和压缩
当哈希表填充满并且还需要插入元素时,哈希表必须重新计算自身的大小。哈希表的大小总是成倍增长。当对哈希表扩容时,我们会预分配 arBucket
类型的C数组,并且向空的节点中存入值为 UNDEF 的 zval
。在节点插入数据之前,这里会浪费 (new_size – old_size) * sizeof(Bucket) 字节的空间。
如果一个有1024个节点的哈希表,再添加元素时,哈希表将会扩容到2048个节点,其中1023个节点都是空节点,这将消耗 1023 * 32 bytes = 32KB 的空间。这是 PHP 哈希表实现方式的缺陷,因为没有完美的解决方案。
编程就是一个不断设计妥协式的解决方案的过程。在底层编程中,就是对 CPU 还是内存的一次取舍。
哈希表可能全是 UNDEF 的节点。当我们插入许多元素后,又删除了它们,哈希表就会碎片化。因为我们永远不会向 arData
中间节点插入数据,这样我们就可能会看到很多 UNDEF 节点。
举个例子来说:
重组 arData
可以整合碎片化的数组元素。当哈希表需要被重组时,首先它会自我压缩。当它压缩之后,会计算是否需要扩容,如果需要的话,同样是成倍扩容。如果不需要,数据会被重新分配到已有的节点中。这个算法不会在每次元素被删除时运行,因为需要消耗大量的 CPU 计算。
以下是压缩后的数组:
压缩算法会遍历所有 arData
里的元素并且替换原来有值的节点为 UNDEF。如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Bucket *p; uint32_t nIndex, i; HT_HASH_RESET(ht); i = 0; p = ht->arData; do { if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) { uint32_t j = i; Bucket *q = p; while (++i < ht->nNumUsed) { p++; if (EXPECTED(Z_TYPE_INFO(p->val) != IS_UNDEF)) { ZVAL_COPY_VALUE(&q->val, &p->val); q->h = p->h; nIndex = q->h | ht->nTableMask; q->key = p->key; Z_NEXT(q->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(j); if (UNEXPECTED(ht->nInternalPointer == i)) { ht->nInternalPointer = j; } q++; j++; } } ht->nNumUsed = j; break; } nIndex = p->h | ht->nTableMask; Z_NEXT(p->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(i); p++; } while (++i < ht->nNumUsed); |
结语
到此,PHP 哈希表的实现基础已经介绍完毕,关于哈希表还有一些进阶的内容没有翻译,因为接下来我准备继续分享 PHP 内核的其他知识点,关于哈希表感兴趣的同学可以移步到原文。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Docker实现原理之 - OverlayFS实现原理
- 微热山丘,探索 IoC、AOP 实现原理(二) AOP 实现原理
- 带你了解vue计算属性的实现原理以及vuex的实现原理
- Docker原理之 - CGroup实现原理
- AOP如何实现及实现原理
- webpack 实现 HMR 及其实现原理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Programming in Haskell
Graham Hutton / Cambridge University Press / 2007-1-18 / GBP 34.99
Haskell is one of the leading languages for teaching functional programming, enabling students to write simpler and cleaner code, and to learn how to structure and reason about programs. This introduc......一起来看看 《Programming in Haskell》 这本书的介绍吧!