5 种使用 Python 代码轻松实现数据可视化的方法

栏目: 编程语言 · Python · 发布时间: 6年前

内容简介:数据可视化是数据科学家工作中的重要组成部分。在项目的早期阶段,你通常会进行探索性数据分析以获取对数据的一些理解。在项目结束时,以清晰、简洁和引人注目的方式展现最终结果是非常重要的。

数据可视化是数据科学家工作中的重要组成部分。在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解。创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型、高维数据集。在项目结束时,以清晰、简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解。

Matplotlib 是一个流行的 Python 库,可以用来很简单地创建数据可视化方案。但每次创建新项目时,设置数据、参数、图形和排版都会变得非常繁琐和麻烦。在这篇博文中,我们将着眼于 5 个数据可视化方法,并使用 Python Matplotlib 为他们编写一些快速简单的函数。与此同时,这里有一个很棒的图表,可用于在工作中选择正确的可视化方法!

5 种使用 Python 代码轻松实现数据可视化的方法

散点图

散点图非常适合展示两个变量之间的关系,因为你可以直接看到数据的原始分布。 如下面第一张图所示的,你还可以通过对组进行简单地颜色编码来查看不同组数据的关系。想要可视化三个变量之间的关系? 没问题! 仅需使用另一个参数(如点大小)就可以对第三个变量进行编码,如下面的第二张图所示。

5 种使用 Python 代码轻松实现数据可视化的方法

5 种使用 Python 代码轻松实现数据可视化的方法

现在开始讨论代码。我们首先用别名 “plt” 导入 Matplotlib 的 pyplot 。要创建一个新的点阵图,我们可调用 plt.subplots() 。我们将 x 轴和 y 轴数据传递给该函数,然后将这些数据传递给 ax.scatter() 以绘制散点图。我们还可以设置点的大小、点颜色和 alpha 透明度。你甚至可以设置 Y 轴为对数刻度。标题和坐标轴上的标签可以专门为该图设置。这是一个易于使用的函数,可用于从头到尾创建散点图!

折线图

当你可以看到一个变量随着另一个变量明显变化的时候,比如说它们有一个大的协方差,那最好使用折线图。让我们看一下下面这张图。我们可以清晰地看到对于所有的主线随着时间都有大量的变化。使用散点绘制这些将会极其混乱,难以真正明白和看到发生了什么。折线图对于这种情况则非常好,因为它们基本上提供给我们两个变量(百分比和时间)的协方差的快速总结。另外,我们也可以通过彩色编码进行分组

5 种使用 Python 代码轻松实现数据可视化的方法

这里是折线图的代码。它和上面的散点图很相似,只是在一些变量上有小的变化。

直方图

直方图对于查看(或真正地探索)数据点的分布是很有用的。查看下面我们以频率和 IQ 做的直方图。我们可以清楚地看到朝中间聚集,并且能看到中位数是多少。我们也可以看到它呈正态分布。使用直方图真得能清晰地呈现出各个组的频率之间的相对差别。组的使用(离散化)真正地帮助我们看到了“更加宏观的图形”,然而当我们使用所有没有离散组的数据点时,将对可视化可能造成许多干扰,使得看清真正发生了什么变得困难。

5 种使用 Python 代码轻松实现数据可视化的方法

下面是在 Matplotlib 中的直方图代码。有两个参数需要注意一下:首先,参数 n_bins 控制我们想要在直方图中有多少个离散的组。更多的组将给我们提供更加完善的信息,但是也许也会引进干扰,使得我们远离全局;另一方面,较少的组给我们一种更多的是“鸟瞰图”和没有更多细节的全局图。其次,参数 cumulative 是一个布尔值,允许我们选择直方图是否为累加的,基本上就是选择是 PDF(Probability Density Function,概率密度函数)还是 CDF(Cumulative Density Function,累积密度函数)。

想象一下我们想要比较数据中两个变量的分布。有人可能会想你必须制作两张直方图,并且把它们并排放在一起进行比较。然而,实际上有一种更好的办法:我们可以使用不同的透明度对直方图进行叠加覆盖。看下图,均匀分布的透明度设置为 0.5 ,使得我们可以看到他背后的图形。这样我们就可以直接在同一张图表里看到两个分布。

5 种使用 Python 代码轻松实现数据可视化的方法

对于重叠的直方图,需要设置一些东西。首先,我们设置可同时容纳不同分布的横轴范围。根据这个范围和期望的组数,我们可以真正地计算出每个组的宽度。最后,我们在同一张图上绘制两个直方图,其中有一个稍微更透明一些。

柱状图

当你试图将类别很少(可能小于10)的分类数据可视化的时候,柱状图是最有效的。如果我们有太多的分类,那么这些柱状图就会非常杂乱,很难理解。柱状图对分类数据很好,因为你可以很容易地看到基于柱的类别之间的区别(比如大小);分类也很容易划分和用颜色进行编码。我们将会看到三种不同类型的柱状图:常规的,分组的,堆叠的。在我们进行的过程中,请查看图形下面的代码。

常规的柱状图如下面的图1。在 barplot() 函数中,xdata 表示 x 轴上的标记,ydata 表示 y 轴上的杆高度。误差条是一条以每条柱为中心的额外的线,可以画出标准偏差。

分组的柱状图让我们可以比较多个分类变量。看看下面的图2。我们比较的第一个变量是不同组的分数是如何变化的(组是G1,G2,……等等)。我们也在比较性别本身和颜色代码。看一下代码,y_data_list 变量实际上是一个 y 元素为列表的列表,其中每个子列表代表一个不同的组。然后我们对每个组进行循环,对于每一个组,我们在 x 轴上画出每一个标记;每个组都用彩色进行编码。

堆叠柱状图可以很好地观察不同变量的分类。在图3的堆叠柱状图中,我们比较了每天的服务器负载。通过颜色编码后的堆栈图,我们可以很容易地看到和理解哪些服务器每天工作最多,以及与其他服务器进行比较负载情况如何。此代码的代码与分组的条形图相同。我们循环遍历每一组,但这次我们把新柱放在旧柱上,而不是放在它们的旁边。

5 种使用 Python 代码轻松实现数据可视化的方法

5 种使用 Python 代码轻松实现数据可视化的方法5 种使用 Python 代码轻松实现数据可视化的方法

 

箱形图

我们之前看了直方图,它很好地可视化了变量的分布。但是如果我们需要更多的信息呢?也许我们想要更清晰的看到标准偏差?也许中值与均值有很大不同,我们有很多离群值?如果有这样的偏移和许多值都集中在一边呢?

这就是箱形图所适合干的事情了。箱形图给我们提供了上面所有的信息。实线框的底部和顶部总是第一个和第三个四分位(比如 25% 和 75% 的数据),箱体中的横线总是第二个四分位(中位数)。像胡须一样的线(虚线和结尾的条线)从这个箱体伸出,显示数据的范围。

由于每个组/变量的框图都是分别绘制的,所以很容易设置。xdata 是一个组/变量的列表。Matplotlib 库的 boxplot() 函数为 ydata 中的每一列或每一个向量绘制一个箱体。因此,xdata 中的每个值对应于 ydata 中的一个列/向量。我们所要设置的就是箱体的美观。

5 种使用 Python 代码轻松实现数据可视化的方法

结语

使用 Matplotlib 有 5 个快速简单的数据可视化方法。将相关事务抽象成函数总是会使你的代码更易于阅读和使用!我希望你喜欢这篇文章,并且学到了一些新的有用的技巧。如果你确实如此,请随时给它点赞。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习实战:基于Scikit-Learn和TensorFlow

机器学习实战:基于Scikit-Learn和TensorFlow

Aurélien Géron / 王静源、贾玮、边蕤、邱俊涛 / 机械工业出版社 / 2018-8 / 119.00

本书主要分为两个部分。第一部分为第1章到第8章,涵盖机器学习的基础理论知识和基本算法——从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法;第二部分为第9章到第16章,探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用TensorFlow搭建和训练深度神经网络,以及卷积神经网络。一起来看看 《机器学习实战:基于Scikit-Learn和TensorFlow》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具