内容简介:这篇文章主要为大家详细介绍了python使用Tesseract库识别验证,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
一、Tesseract简介
Tesseract是一个OCR库(OCR是英文Optical Character Recognition的缩写),它用来对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程,Tesseract是目前公认最优秀,识别相对精准的OCR库。
二、Tesseract的使用
1.下载并安装Tesseract:点击下载
2.在Windows系统下设置环境变量:
#根据下载安装文件的路径配置环境变量 set TESSDATA_PREFIX F:\Tesseract-OCR\
3.安装pytesseract模块
pip install pytesseract
4.在 Python 脚本中引入tesseract.exe应用程序的方式:
pytesseract.pytesseract.tesseract_cmd = r'F:\Tesseract-OCR\tesseract.exe'
5.案例演示
识别以下图片文字:
import pytesseract from PIL import Image #1.引入Tesseract程序 pytesseract.pytesseract.tesseract_cmd = r'F:\Tesseract-OCR\tesseract.exe' #2.使用Image模块下的Open()函数打开图片 image = Image.open('6.jpg',mode='r') print(image) #3.识别图片文字 code= pytesseract.image_to_string(image) print(code)
结果演示:
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=611x210 at 0x1A5DFDCB4A8>
Google
注:tesseract-OCR引擎识别验证码有些无法识别,比如像豆瓣生成的验证码无法识别其内容,如果需要爬取豆瓣中的数据这时候就需要手动的输入验证码:
三、模拟登陆知乎源码
import requests import time import pytesseract from PIL import Image from bs4 import BeautifulSoup def captcha(data): with open('captcha.jpg','wb') as fp: fp.write(data) time.sleep(1) image = Image.open("captcha.jpg") text = pytesseract.image_to_string(image) print "机器识别后的验证码为:" + text command = raw_input("请输入Y表示同意使用,按其他键自行重新输入:") if (command == "Y" or command == "y"): return text else: return raw_input('输入验证码:') def zhihuLogin(username,password): # 构建一个保存Cookie值的session对象 sessiona = requests.Session() headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0'} # 先获取页面信息,找到需要POST的数据(并且已记录当前页面的Cookie) html = sessiona.get('https://www.zhihu.com/#signin', headers=headers).content # 找到 name 属性值为 _xsrf 的input标签,取出value里的值 _xsrf = BeautifulSoup(html ,'lxml').find('input', attrs={'name':'_xsrf'}).get('value') # 取出验证码,r后面的值是Unix时间戳,time.time() captcha_url = 'https://www.zhihu.com/captcha.gif?r=%d&type=login' % (time.time() * 1000) response = sessiona.get(captcha_url, headers = headers) data = { "_xsrf":_xsrf, "email":username, "password":password, "remember_me":True, "captcha": captcha(response.content) } response = sessiona.post('https://www.zhihu.com/login/email', data = data, headers=headers) print response.text response = sessiona.get('https://www.zhihu.com/people/maozhaojun/activities', headers=headers) print response.text if __name__ == "__main__": #username = raw_input("username") #password = raw_input("password") zhihuLogin('xxxx@qq.com','ALAxxxxIME')
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Node实现验证码识别
- Python爬虫验证码识别(使用Tesseract OCR识别)
- python验证码识别实战2
- python验证码识别实例代码
- 常用验证码的识别方法
- python利用Tesseract识别验证码
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
PHP and MySQL Web Development (3rd Edition) (Developer's Library
Luke Welling、Laura Thomson / Sams / 2004-09-29 / USD 49.99
We've taken the best and made it even better. The third edition of the best-selling PHP and MySQL Web Development has been updated to include material and code on MySQL 5, PHP 5 and on PHPs object mod......一起来看看 《PHP and MySQL Web Development (3rd Edition) (Developer's Library》 这本书的介绍吧!