内容简介:去年12月,美国宇航局宣布,开普勒(Kepler)太空望远镜的数据中隐藏着两颗新的系外行星。然而,这两颗新行星并没有被人类发现。相反,外行星狩猎神经网络(hunting neural network一种松散地模仿人类大脑的机器学...
去年12月,美国宇航局宣布,开普勒(Kepler)太空望远镜的数据中隐藏着两颗新的系外行星。然而,这两颗新行星并没有被人类发现。相反,外行星狩猎神经网络(hunting neural network一种松散地模仿人类大脑的机器学习算法)在开普勒数据中通过一种微妙的模式来发现行星,而这几乎不可能被人看到。
星期四,行星 AI 的首席谷歌工程师Christopher Shallue在一篇博客文章中宣布,该公司正在开源该算法的代码。换句话说,任何人都可以下载代码并在开普勒数据中帮助寻找系外行星。
开普勒太空望远镜于2009年发射,以搜寻系外行星。开普勒研究的恒星太远,无法直接观测到轨道上的外行星,所以天文学家必须根据观测到的恒星亮度的变化来推断外行星的存在。当一颗系外行星经过一颗恒星的前方时,恒星的亮度会出现暂时的下降,通过这种方式发现系外行星的存在。
经过四年观测15万颗恒星后,开普勒已经为天文学家筛选了大量的数据,远比人类能够有效搜索的数据多。为了将搜寻范围限制在最有希望的位置,天文学家专注于开普勒收到的30,000个最强恒星信号,并设法在该过程中发现2,500颗系外行星。
然而,这意味着大约有12万个较弱的信号未经分析,其中任何一个都可能拥有一颗系外行星。为了搜索这个宝贵的天文数据,Google的研究人员对15,000个已被NASA研究人员标记的外行星数据实例进行了神经网络训练。这有效地教会了算法在数据中寻找哪些签名证明系外行星的存在。
在对算法进行训练之后,谷歌的研究人员用它分析了700颗来自已知有其他系外行星的弱信号。在这个过程中,沙尔和他的同事们又发现了两个新的系外行星。
谷歌在Github发布了系外行星搜索算法的代码,其中还包括它的使用说明。尽管代码(和开普勒数据)可供任何人使用,但它不完全是“即试即用”。懂得谷歌的机器学习软件 TensorFlow 和 Python 编码的经验人更有优势。
根据Shallue的说法,释放代码是让公众了解神经网络如何发现行星,同时鼓励发现进一步分析开普勒数据的方式。除此之外,Shallue表示他希望神经网络能够为将来更复杂的系外行星搜索 工具 铺平道路。
【声明】文章转载自:开源中国社区 [http://www.oschina.net]
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 聆听中国开源最强音 | 国内大厂开源项目齐聚 OSCAR 开源先锋日
- 小米 9 开源内核代码,上市即开源
- 开源 | 陌陌风控系统正式开源
- 开源 |《Go 语言高级编程》开源图书
- 开源不只是“喊喊” 看红帽的开源之道
- 中国开源走向世界,深圳落成国际开源谷
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
安全测试指南(第4版)
OWASP基金会 / 电子工业出版社 / 2016-7-1 / CNY 89.00
软件安全问题也许是这个时代面临的*为重要的技术挑战。Web应用程序让业务、社交等网络活动飞速发展,这同时也加剧了它们对软件安全的要求。我们急需建立一个强大的方法来编写和保护我们的互联网、Web应用程序和数据,并基于工程和科学的原则,用一致的、可重复的和定义的方法来测试软件安全问题。本书正是实现这个目标的重要一步,作为一本安全测试指南,详细讲解了Web应用测试的“4W1H”,即“什么是测试”、“为什......一起来看看 《安全测试指南(第4版)》 这本书的介绍吧!