Spark整合Mongodb的方法

栏目: 数据库 · MongoDB · 发布时间: 6年前

内容简介:Spark 是一个通用,快速,适用于大规模数据的处理引擎。接下来通过本文给大家分享Spark整合Mongodb的方法,感兴趣的朋友一起看看吧

Spark介绍

按照官方的定义,Spark 是一个通用,快速,适用于大规模数据的处理引擎。

通用性:我们可以使用Spark SQL来执行常规分析, Spark Streaming 来流数据处理, 以及用Mlib来执行机器学习等。Java,python,scala及R语言的支持也是其通用性的表现之一。

快速: 这个可能是Spark成功的最初原因之一,主要归功于其基于内存的运算方式。当需要处理的数据需要反复迭代时,Spark可以直接在内存中暂存数据,而无需像Map Reduce一样需要把数据写回磁盘。官方的数据表明:它可以比传统的Map Reduce快上100倍。

大规模:原生支持HDFS,并且其计算节点支持弹性扩展,利用大量廉价计算资源并发的特点来支持大规模数据处理。

环境准备

mongodb下载

解压安装

启动 mongodb 服务

$MONGODB_HOME/bin/mongod --fork --dbpath=/root/data/mongodb/ --logpath=/root/data/log/mongodb/mongodb.log

pom依赖

<dependency> 
<groupId>org.mongodb.spark</groupId> 
<artifactId>mongo-spark-connector_2.11</artifactId> 
<version>${spark.version}</version> 
</dependency>

实例代码

object ConnAppTest { 
def main(args: Array[String]): Unit = { 
val spark = SparkSession.builder() 
.master("local[2]") 
.appName("ConnAppTest") 
.config("spark.mongodb.input.uri", "mongodb://192.168.31.136/testDB.testCollection") // 指定mongodb输入 
.config("spark.mongodb.output.uri", "mongodb://192.168.31.136/testDB.testCollection") // 指定mongodb输出 
.getOrCreate() 
// 生成测试数据 
val documents = spark.sparkContext.parallelize((1 to 10).map(i => Document.parse(s"{test: $i}"))) 
// 存储数据到mongodb 
MongoSpark.save(documents) 
// 加载数据 
val rdd = MongoSpark.load(spark) 
// 打印输出 
rdd.show 
} 
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

世界是平的(3.0版)

世界是平的(3.0版)

[美] 托马斯·弗里德曼 / 何帆、肖莹莹、郝正非 / 湖南科学技术出版社 / 2008-9 / 58.00元

世界变得平坦,是不是迫使我们跑得更快才能拥有一席之地? 在《世界是平的》中,托马斯·弗里德曼描述了当代世界发生的重大变化。科技和通信领域如闪电般迅速的进步,使全世界的人们可以空前地彼此接近——在印度和中国创造爆炸式增长的财富;挑战我们中的一些人,比他们更快占领地盘。3.0版新增两章,更新了报告和注释方面的内容,这些内容均采自作者考察世界各地特别是整个美国中心地带的见闻,在美国本土,世界的平坦......一起来看看 《世界是平的(3.0版)》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换