Spark整合Mongodb的方法

栏目: 数据库 · MongoDB · 发布时间: 7年前

内容简介:Spark 是一个通用,快速,适用于大规模数据的处理引擎。接下来通过本文给大家分享Spark整合Mongodb的方法,感兴趣的朋友一起看看吧

Spark介绍

按照官方的定义,Spark 是一个通用,快速,适用于大规模数据的处理引擎。

通用性:我们可以使用Spark SQL来执行常规分析, Spark Streaming 来流数据处理, 以及用Mlib来执行机器学习等。Java,python,scala及R语言的支持也是其通用性的表现之一。

快速: 这个可能是Spark成功的最初原因之一,主要归功于其基于内存的运算方式。当需要处理的数据需要反复迭代时,Spark可以直接在内存中暂存数据,而无需像Map Reduce一样需要把数据写回磁盘。官方的数据表明:它可以比传统的Map Reduce快上100倍。

大规模:原生支持HDFS,并且其计算节点支持弹性扩展,利用大量廉价计算资源并发的特点来支持大规模数据处理。

环境准备

mongodb下载

解压安装

启动 mongodb 服务

$MONGODB_HOME/bin/mongod --fork --dbpath=/root/data/mongodb/ --logpath=/root/data/log/mongodb/mongodb.log

pom依赖

<dependency> 
<groupId>org.mongodb.spark</groupId> 
<artifactId>mongo-spark-connector_2.11</artifactId> 
<version>${spark.version}</version> 
</dependency>

实例代码

object ConnAppTest { 
def main(args: Array[String]): Unit = { 
val spark = SparkSession.builder() 
.master("local[2]") 
.appName("ConnAppTest") 
.config("spark.mongodb.input.uri", "mongodb://192.168.31.136/testDB.testCollection") // 指定mongodb输入 
.config("spark.mongodb.output.uri", "mongodb://192.168.31.136/testDB.testCollection") // 指定mongodb输出 
.getOrCreate() 
// 生成测试数据 
val documents = spark.sparkContext.parallelize((1 to 10).map(i => Document.parse(s"{test: $i}"))) 
// 存储数据到mongodb 
MongoSpark.save(documents) 
// 加载数据 
val rdd = MongoSpark.load(spark) 
// 打印输出 
rdd.show 
} 
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Web Data Mining

Web Data Mining

Bing Liu / Springer / 2011-6-26 / CAD 61.50

Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an ......一起来看看 《Web Data Mining》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具