内容简介:这篇文章主要介绍了numpy使用技巧之数组过滤实例代码,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
本文研究的主要是numpy使用技巧之数组过滤的相关内容,具体如下。
当使用布尔数组b作为下标存取数组x中的元素时,将收集数组x中所有在数组b中对应下标为True的元素。使用布尔数组作为下标获得的数组不和原始数组共享数据空间,注意这种方式只对应于布尔数组(array),不能使用布尔列表(list)。
>>> x = np.arange(5,0,-1) >>> x array([5, 4, 3, 2, 1]) >>> x[np.array([True, False, True, False, False])] >>> # 下标为True的取出来,布尔数组中下标为0,2的元素为True,因此获取x中下标为0,2的元素 array([5, 3]) >>> x[[True, False, True, False, False]]#Error,这不是我们想要的结果 >>> # 如果是布尔列表,则把True当作1, False当作0,按照整数序列方式获取x中的元素 array([4, 5, 4, 5, 5]) >>> x[np.array([True, False, True, True])] >>> # 布尔数组的长度不够时,不够的部分都当作False array([5, 3, 2]) >>> x[np.array([True, False, True, True])] = -1, -2, -3#只修改下标为True的元素 >>> # 布尔数组下标也可以用来修改元素 >>> x array([-1, 4, -2, -3, 1])
注意:布尔数组一般不是手工产生的,通常我们使用一条布尔表达式来得到,如:
>>> x = np.random.rand(10) # 产生一个长度为10,元素值为0-1的随机数的数组 >>> x array([ 0.72223939, 0.921226 , 0.7770805 , 0.2055047 , 0.17567449, 0.95799412, 0.12015178, 0.7627083 , 0.43260184, 0.91379859]) >>> x>0.5 >>> # 数组x中的每个元素和0.5进行大小比较,得到一个布尔数组,True表示x中对应的值大于0.5 array([ True, True, True, False, False, True, False, True, False, True], dtype=bool) >>> x[x>0.5]# x>0.5是一个布尔数组 >>> # 使用x>0.5返回的布尔数组收集x中的元素,因此得到的结果是x中所有大于0.5的元素的数组 array([ 0.72223939, 0.921226 , 0.7770805 , 0.95799412, 0.7627083 , 0.91379859])
总结
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- cURL工具的使用技巧
- slice的一些使用技巧
- 分享一些 Broadcast 使用技巧
- AndroidStudio使用技巧-debug篇
- PyCharm/IDEA 使用技巧总结
- IDEA 超实用使用技巧分享
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Computational Geometry
Mark de Berg、Otfried Cheong、Marc van Kreveld、Mark Overmars / Springer / 2008-4-16 / USD 49.95
This well-accepted introduction to computational geometry is a textbook for high-level undergraduate and low-level graduate courses. The focus is on algorithms and hence the book is well suited for st......一起来看看 《Computational Geometry》 这本书的介绍吧!