numpy.random.seed()的使用实例解析

栏目: 编程语言 · Python · 发布时间: 6年前

内容简介:这篇文章主要介绍了numpy.random.seed()的使用实例解析,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下

这个函数的使用方法,已经有前辈讲解过了,只是自己在测试的时候有一些思考,所以便写了这篇博客。下面是前辈文章的原话:

seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

编写如下第一份代码:

from numpy import *
num=0
while(num<5):
  random.seed(5)
  print(random.random())
  num+=1

运行结果为:

0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948

可以看到,每次运行的结果都是一样的

修改代码,如下为第二份代码:

from numpy import *
num=0
random.seed(5)
while(num<5):
  print(random.random())
  num+=1

运行结果为:

0.22199317108973948
0.8707323061773764
0.20671915533942642
0.9186109079379216
0.48841118879482914

可以看到,和上一份代码的运行结果不同。这里每次的输出结果都是不一样的。这也就提醒了我们在以后编写代码的时候要明白一点:random.seed(something)只能是一次有效。其实仔细想想也很自然,如果不是一次有效,比如说是一直有效,那岂不是会影响到后续的代码中随机数的选取?

这次测试的代码比较可以说是很简单的,但是却暴露了我的一个思维上的漏洞:在这次测试中我虽然明白了:

seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

这段话的意思,但是我却先入为主地认为第二份代码的结果应和第一份代码中的一致。而通过反面思考,假设这个函数使用一次后便是一直有效的,那么每次生成的随即数都会相同,但是这样岂不是会影响到后续的代码中随机数的选取?

所以,以后学新的东西的时候,都要问自己傻问题,不断地去测试自己的想法以达到更深的理解。

故对于该函数的使用,可总结为:

seed( ) 用于指定随机数生成时所用算法开始的整数值。
1.如果使用相同的seed( )值,则每次生成的随即数都相同;
2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
3.设置的seed()值仅一次有效

总结


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

标签

标签

Gene Smith / 张军、陈军亮 / 机械工业出版社 / 2012-6 / 59.00元

本书对标记系统这一概念的内涵和外延进行了系统化的、深入浅出的阐述。从什么是标记系统、标记系统有什么价值,到标记系统的架构和与其他分类系统的对比,再到标签的呈现方式和标记系统的实现细节,作者都用通俗易懂的语言进行了阐述,并附有详细的示例和具体的案例研究。本书的每一章都涵盖了标记系统的一个方面,主要内容包括:标记系统的模型、价值、架构,标签的分类、可视化、管理方法,最后介绍标记系统设计方法。本书带领读......一起来看看 《标签》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具