CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器

栏目: 软件资讯 · 发布时间: 3年前

内容简介:CosId 通用、灵活、高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用、灵活、高性能的分布式系统 ID 生成器。 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS 性能:409W/s JMH 基准测试)、RedisIdGene...

CosId 通用、灵活、高性能的分布式 ID 生成器

介绍

CosId 旨在提供通用、灵活、高性能的分布式系统 ID 生成器。 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS 性能:409W/s JMH 基准测试)、RedisIdGenerator (单机 TPS 性能(步长 1000):3687W+/s JMH 基准测试)。

更新内容(0.9.2) ???? ???? ????

  1. 增强:支持自定义配置机器状态存储(LocalMachineState)自定义位置(spring-boot-starter-cosid)。
  2. 增强:公开暴露 MachineId (spring-boot-starter-cosid)。
  3. 增强:支持自定义配置为 SecondSnowflakeId(spring-boot-starter-cosid)。
  4. 增强:优化 RedisIdGenerator 性能。
  5. 增强:RedisMachineIdDistributor 按照实例是否有状态选择不同 MachineId 归还策略。

SnowflakeId

CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器

SnowflakeId 使用 Long (64 bits) 位分区来生成 ID 的一种分布式 ID 算法。 通用的位分配方案为:timestamp (41 bits) + machineId (10 bits) + sequence (12 bits) = 63 bits 。

  • 41 位 timestamp = (1L<<41)/(1000/3600/365) 约可以存储 69 年的时间戳,即可以使用的绝对时间为 EPOCH + 69 年,一般我们需要自定义 EPOCH 为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。
  • 10 位 machineId = (1L<<10) = 1024 即相同业务可以部署 1024 个副本 (在 Kubernetes 概念里没有主从副本之分,这里直接沿用 Kubernetes 的定义) 实例,一般情况下没有必要使用这么多位,所以会根据部署规模需要重新定义。
  • 12 位 sequence = (1L<<12) * 1000 = 4096000 即单机每秒可生成约 409W 的 ID,全局同业务集群可产生 4096000*1024=419430W=41.9亿(TPS)。

从 SnowflakeId 设计上可以看出:

  • CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器 timestamp 在高位,所以 SnowflakeId 是本机单调递增的,受全局时钟同步影响 SnowflakeId 是全局趋势递增的。
  • CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器 SnowflakeId 不对任何第三方中间件有强依赖关系,并且性能也非常高。
  • CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器 位分配方案可以按照业务系统需要灵活配置,来达到最优使用效果。
  • CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器 强依赖本机时钟,潜在的时钟回拨问题会导致 ID 重复。
  • CosId 0.9.2 发布,通用、灵活、高性能的分布式 ID 生成器 machineId 需要手动设置,实际部署时如果采用手动分配 machineId,会非常低效。

CosId-SnowflakeId 主要解决 SnowflakeId 俩大问题:机器号分配问题、时钟回拨问题。 并且提供更加友好、灵活的使用体验。

MachineIdDistributor (MachineId 分配器)

目前 CosId 提供了以下三种 MachineId 分配器。

ManualMachineIdDistributor

cosid:
  snowflake:
    manual:
      enabled: true
      machine-id: 1

手动分配 MachineId

StatefulSetMachineIdDistributor

cosid:
  snowflake:
    stateful-set:
    enabled: true

使用 Kubernetes 的 StatefulSet 提供的稳定的标识 ID 作为机器号。

RedisMachineIdDistributor

cosid:
  snowflake:
    redis:
      enabled: true

使用 Redis 作为机器号的分发存储。

ClockBackwardsSynchronizer (时钟回拨同步器)

默认提供的 DefaultClockBackwardsSynchronizer 时钟回拨同步器使用主动等待同步策略,spinThreshold(默认值 20 毫秒) 用于设置自旋等待阈值, 当大于spinThreshold 时使用线程休眠等待时钟同步,如果超过brokenThreshold(默认值 2 秒)时会直接抛出ClockTooManyBackwardsException异常。

LocalMachineState (本地机器状态存储)

public class MachineState {
    public static final MachineState NOT_FOUND = of(-1, -1);
    private final int machineId;
    private final long lastTimeStamp;

    public MachineState(int machineId, long lastTimeStamp) {
        this.machineId = machineId;
        this.lastTimeStamp = lastTimeStamp;
    }

    public int getMachineId() {
        return machineId;
    }

    public long getLastTimeStamp() {
        return lastTimeStamp;
    }

    public static MachineState of(int machineId, long lastStamp) {
        return new MachineState(machineId, lastStamp);
    }
}

默认提供的 FileLocalMachineState 本地机器状态存储,使用本地文件存储机器号、最近一次时间戳,用作 MachineState 缓存。

ClockSyncSnowflakeId (主动时钟同步 SnowflakeId)

默认 SnowflakeId 当发生时钟回拨时会直接抛出 ClockBackwardsException 异常,而使用 ClockSyncSnowflakeId 会使用 ClockBackwardsSynchronizer 主动等待时钟同步来重新生成 ID,提供更加友好的使用体验。

SafeJavaScriptSnowflakeId (JavaScript 安全的 SnowflakeId)

SnowflakeId snowflakeId=SafeJavaScriptSnowflakeId.ofMillisecond(1);

JavaScript 的 Number.MAX_SAFE_INTEGER 只有 53 位,如果直接将 63 位的 SnowflakeId 返回给前端,那么会值溢出的情况,通常我们可以将SnowflakeId转换为 String 类型或者自定义 SnowflakeId 位分配来缩短 SnowflakeId 的位数 使 ID 提供给前端时不溢出。

SnowflakeIdStateParser (可以将 SnowflakeId 解析成可读性更好的 SnowflakeIdState )

public class SnowflakeIdState {

    private final long id;

    private final int machineId;

    private final long sequence;

    private final LocalDateTime timestamp;
    /**
     * {@link #timestamp}-{@link #machineId}-{@link #sequence}
     */
    private final String friendlyId;
}
        SnowflakeIdState idState=snowflakeIdStateParser.parse(id);
        idState.getFriendlyId(); //20210623131730192-1-0

RedisIdGenerator

RedisIdGenerator 步长设置为 1 时(每次生成ID都需要执行一次 Redis 网络 IO 请求)TPS 性能约为 21W/s (JMH 基准测试),如果在部分场景下我们对 ID 生成的 TPS 性能有更高的要求,那么可以选择使用增加每次ID分发步长来降低网络 IO 请求频次,提高 IdGenerator 性能(比如增加步长为 1000,性能可提升到 3545W+/s JMH 基准测试)。

IdGeneratorProvider

cosid:
  snowflake:
    provider:
      bizA:
        #      epoch:
        #      timestamp-bit:
        sequence-bit: 12
      bizB:
        #      epoch:
        #      timestamp-bit:
        sequence-bit: 12
IdGenerator idGenerator = idGeneratorProvider.get("bizA");

在实际使用中我们一般不会所有业务服务使用同一个 IdGenerator ,而是不同的业务使用不同的 IdGenerator,那么 IdGeneratorProvider 就是为了解决这个问题而存在的,他是 IdGenerator 的容器,可以通过业务名来获取相应的 IdGenerator

Examples

CosId-Examples

安装

Gradle

Kotlin DSL

    val cosidVersion = "0.9.2";
    implementation("me.ahoo.cosid:spring-boot-starter-cosid:${cosidVersion}")

Maven

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>
    <artifactId>demo</artifactId>
    <properties>
        <cosid.version>0.9.2</cosid.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>me.ahoo.cosid</groupId>
            <artifactId>spring-boot-starter-cosid</artifactId>
            <version>${cosid.version}</version>
        </dependency>
    </dependencies>

</project>

application.yaml

cosid:
  namespace: ${spring.application.name}
  snowflake:
    #    instance-id:
    #      stable: true
    #      machine-bit: 10
    #      instance-id: ${HOSTNAME}
    #  stateful-set:
    #    enabled: true
    #  manual:
    #    enabled: true
    #    machine-id: 1
    redis:
      enabled: true
    provider:
      order:
        #      epoch:
        #      timestamp-bit:
        sequence-bit: 12
      user:
        #      epoch:
        #      timestamp-bit:
        sequence-bit: 12
    enabled: true
#  redis:
#    enabled: true
#    provider:
#      order:
#        step: 100

JMH-Benchmark

SnowflakeId

Benchmark                                                    Mode  Cnt        Score   Error  Units
SnowflakeIdBenchmark.millisecondSnowflakeId_generate        thrpt       4093924.313          ops/s
SnowflakeIdBenchmark.safeJsMillisecondSnowflakeId_generate  thrpt        511542.292          ops/s
SnowflakeIdBenchmark.safeJsSecondSnowflakeId_generate       thrpt        511939.629          ops/s
SnowflakeIdBenchmark.secondSnowflakeId_generate             thrpt       4204761.870          ops/s

RedisIdGenerator

gradle cosid-redis:jmh
Benchmark                             Mode  Cnt         Score        Error  Units
RedisIdGeneratorBenchmark.step_1     thrpt   25    220218.848 ±   2070.786  ops/s
RedisIdGeneratorBenchmark.step_100   thrpt   25   3605422.967 ±  13479.405  ops/s
RedisIdGeneratorBenchmark.step_1000  thrpt   25  36874696.252 ± 357214.292  ops/s

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

.net之美

.net之美

张子阳 / 机械工业出版社 / 2014-1-1 / 79

本书是.NET 程序员进阶修炼的必读之作,由拥有多年开发经验的资深.NET 技术专家对C# 和.NET 中实用的、关键的和难以理解的知识点进行了深入解析,旨在帮助读者在尽可能短的时间内以 尽可能低的学习成本去掌握那些最应该被掌握的知识。书中的每个知识点都辅之以精心设计的案例,易 于理解,实践性强。 全书共17 章,分为两个部分:第一部分(1~5 章)主要讲解了C# 语言中的一些关键知识点,如......一起来看看 《.net之美》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具