内容简介:flask 源码解析4:上下文
上下文一直是计算机中难理解的概念,在知乎的一个问题下面有个很通俗易懂的回答:
每一段程序都有很多外部变量。只有像Add这种简单的函数才是没有外部变量的。一旦你的一段程序有了外部变量,这段程序就不完整,不能独立运行。你为了使他们运行,就要给所有的外部变量一个一个写一些值进去。这些值的集合就叫上下文。 -- vzch
比如,在 flask 中,视图函数需要知道它执行情况的请求信息(请求的 url,参数,方法等)以及应用信息(应用中初始化的数据库等),才能够正确运行。
最直观地做法是把这些信息封装成一个对象,作为参数传递给视图函数。但是这样的话,所有的视图函数都需要添加对应的参数,即使该函数内部并没有使用到它。
flask 的做法是把这些信息作为 类似全局变量的东西
,视图函数需要的时候,可以使用 from flask import request
获取。但是这些对象和全局变量不同的是——它们必须是动态的,因为在多线程或者多协程的情况下,每个线程或者协程获取的都是自己独特的对象,不会互相干扰。
那么如何实现这种效果呢?如果对 python 多线程比较熟悉的话,应该知道多线程中有个非常类似的概念threading.local,可以实现多线程访问某个变量的时候只看到自己的数据。内部的原理说起来也很简单,这个对象有一个字典,保存了线程 id 对应的数据,读取该对象的时候,它动态地查询当前线程 id 对应的数据。flaskpython 上下文的实现也类似,后面会详细解释。
flask 中有两种上下文: application context
和 request context
。上下文有关的内容定义在 globals.py
文件,文件的内容也非常短:
def _lookup_req_object(name): top = _request_ctx_stack.top if top is None: raise RuntimeError(_request_ctx_err_msg) return getattr(top, name) def _lookup_app_object(name): top = _app_ctx_stack.top if top is None: raise RuntimeError(_app_ctx_err_msg) return getattr(top, name) def _find_app(): top = _app_ctx_stack.top if top is None: raise RuntimeError(_app_ctx_err_msg) return top.app # context locals _request_ctx_stack = LocalStack() _app_ctx_stack = LocalStack() current_app = LocalProxy(_find_app) request = LocalProxy(partial(_lookup_req_object, 'request')) session = LocalProxy(partial(_lookup_req_object, 'session')) g = LocalProxy(partial(_lookup_app_object, 'g'))
flask
提供两种上下文: application context
和 request context
。 app lication context
又演化出来两个变量 current_app
和 g
,而 request context
则演化出来 request
和 session
。
这里的实现用到了两个东西: LocalStack
和 LocalProxy
。它们两个的结果就是我们可以动态地获取两个上下文的内容,在并发程序中每个视图函数都会看到属于自己的上下文,而不会出现混乱。
LocalStack
和 LocalProxy
都是 werkzeug
提供的,定义在 local.py
文件中。在分析这两个类之前,我们先介绍这个文件另外一个基础的类 Local
。 Local
就是实现了类似 threading.local
的效果——多线程或者多协程情况下全局变量的隔离效果。下面是它的代码:
# since each thread has its own greenlet we can just use those as identifiers # for the context. If greenlets are not available we fall back to the # current thread ident depending on where it is. try: from greenlet import getcurrent as get_ident except ImportError: try: from thread import get_ident except ImportError: from _thread import get_ident class Local(object): __slots__ = ('__storage__', '__ident_func__') def __init__(self): # 数据保存在 __storage__ 中,后续访问都是对该属性的操作 object.__setattr__(self, '__storage__', {}) object.__setattr__(self, '__ident_func__', get_ident) def __call__(self, proxy): """Create a proxy for a name.""" return LocalProxy(self, proxy) # 清空当前线程/协程保存的所有数据 def __release_local__(self): self.__storage__.pop(self.__ident_func__(), None) # 下面三个方法实现了属性的访问、设置和删除。 # 注意到,内部都调用 `self.__ident_func__` 获取当前线程或者协程的 id,然后再访问对应的内部字典。 # 如果访问或者删除的属性不存在,会抛出 AttributeError。 # 这样,外部用户看到的就是它在访问实例的属性,完全不知道字典或者多线程/协程切换的实现 def __getattr__(self, name): try: return self.__storage__[self.__ident_func__()][name] except KeyError: raise AttributeError(name) def __setattr__(self, name, value): ident = self.__ident_func__() storage = self.__storage__ try: storage[ident][name] = value except KeyError: storage[ident] = {name: value} def __delattr__(self, name): try: del self.__storage__[self.__ident_func__()][name] except KeyError: raise AttributeError(name)
可以看到, Local
对象内部的数据都是保存在 __storage__
属性的,这个属性变量是个嵌套的字典: map[ident]map[key]value
。最外面字典 key 是线程或者协程的 identity,value 是另外一个字典,这个内部字典就是用户自定义的 key-value 键值对。用户访问实例的属性,就变成了访问内部的字典,外面字典的 key 是自动关联的。 __ident_func
是 协程的 get_current
或者线程的 get_ident
,从而获取当前代码所在线程或者协程的 id。
除了这些基本操作之外, Local
还实现了 __release_local__
,用来清空(析构)当前线程或者协程的数据(状态)。 __call__
操作来创建一个 LocalProxy
对象, LocalProxy
会在下面讲到。
理解了 Local
,我们继续回来看另外两个类。
LocalStack
是基于 Local
实现的栈结构。如果说 Local
提供了多线程或者多协程隔离的属性访问,那么 LocalStack
就提供了隔离的栈访问。下面是它的实现代码,可以看到它提供了 push
、 pop
和 top
方法。
__release_local__
可以用来清空当前线程或者协程的栈数据, __call__
方法返回当前线程或者协程栈顶元素的代理对象。
class LocalStack(object): """This class works similar to a :class:`Local` but keeps a stack of objects instead. """ def __init__(self): self._local = Local() def __release_local__(self): self._local.__release_local__() def __call__(self): def _lookup(): rv = self.top if rv is None: raise RuntimeError('object unbound') return rv return LocalProxy(_lookup) # push、pop 和 top 三个方法实现了栈的操作, # 可以看到栈的数据是保存在 self._local.stack 属性中的 def push(self, obj): """Pushes a new item to the stack""" rv = getattr(self._local, 'stack', None) if rv is None: self._local.stack = rv = [] rv.append(obj) return rv def pop(self): """Removes the topmost item from the stack, will return the old value or `None` if the stack was already empty. """ stack = getattr(self._local, 'stack', None) if stack is None: return None elif len(stack) == 1: release_local(self._local) return stack[-1] else: return stack.pop() @property def top(self): """The topmost item on the stack. If the stack is empty, `None` is returned. """ try: return self._local.stack[-1] except (AttributeError, IndexError): return None
我们在之前看到了 request context
的定义,它就是一个 LocalStack
的实例:
_request_ctx_stack = LocalStack()
它会当前线程或者协程的请求都保存在栈里,等使用的时候再从里面读取。至于为什么要用到栈结构,而不是直接使用 Local
,我们会在后面揭晓答案,你可以先思考一下。
LocalProxy
是一个 Local
对象的代理,负责把所有对自己的操作转发给内部的 Local
对象。 LocalProxy
的构造函数介绍一个 callable 的参数,这个 callable 调用之后需要返回一个 Local
实例,后续所有的属性操作都会转发给 callable 返回的对象。
class LocalProxy(object): """Acts as a proxy for a werkzeug local. Forwards all operations to a proxied object. """ __slots__ = ('__local', '__dict__', '__name__') def __init__(self, local, name=None): object.__setattr__(self, '_LocalProxy__local', local) object.__setattr__(self, '__name__', name) def _get_current_object(self): """Return the current object.""" if not hasattr(self.__local, '__release_local__'): return self.__local() try: return getattr(self.__local, self.__name__) except AttributeError: raise RuntimeError('no object bound to %s' % self.__name__) @property def __dict__(self): try: return self._get_current_object().__dict__ except RuntimeError: raise AttributeError('__dict__') def __getattr__(self, name): if name == '__members__': return dir(self._get_current_object()) return getattr(self._get_current_object(), name) def __setitem__(self, key, value): self._get_current_object()[key] = value
这里实现的关键是把通过参数传递进来的 Local
实例保存在 __local
属性中,并定义了 _get_current_object()
方法获取当前线程或者协程对应的对象。
NOTE:前面双下划线的属性,会保存到 _ClassName__variable
中。所以这里通过 “_LocalProxy__local”
设置的值,后面可以通过 self.__local
来获取。关于这个知识点,可以查看 stackoverflow 的这个问题
。
然后 LocalProxy
重写了所有的魔术方法(名字前后有两个下划线的方法),具体操作都是转发给代理对象的。这里只给出了几个魔术方法,感兴趣的可以查看源码中所有的魔术方法。
继续回到 request context
的实现:
_request_ctx_stack = LocalStack() request = LocalProxy(partial(_lookup_req_object, 'request')) session = LocalProxy(partial(_lookup_req_object, 'session'))
再次看这段代码希望能看明白, _request_ctx_stack
是多线程或者协程隔离的栈结构, request
每次都会调用 _lookup_req_object
栈头部的数据来获取保存在里面的 requst context
。
那么请求上下文信息是什么被放在 stack 中呢?还记得之前介绍的 wsgi_app()
方法有下面两行代码吗?
ctx = self.request_context(environ) ctx.push()
每次在调用 app.__call__
的时候,都会把对应的请求信息压栈,最后执行完请求的处理之后把它出栈。
我们来看看 request_context
, 这个 方法只有一行代码:
def request_context(self, environ): return RequestContext(self, environ)
它调用了 RequestContext
,并把 self
和请求信息的字典 environ
当做参数传递进去。追踪到 RequestContext
定义的地方,它出现在 ctx.py
文件中,代码如下:
class RequestContext(object): """The request context contains all request relevant information. It is created at the beginning of the request and pushed to the `_request_ctx_stack` and removed at the end of it. It will create the URL adapter and request object for the WSGI environment provided. """ def __init__(self, app, environ, request=None): self.app = app if request is None: request = app.request_class(environ) self.request = request self.url_adapter = app.create_url_adapter(self.request) self.match_request() def match_request(self): """Can be overridden by a subclass to hook into the matching of the request. """ try: url_rule, self.request.view_args = \ self.url_adapter.match(return_rule=True) self.request.url_rule = url_rule except HTTPException as e: self.request.routing_exception = e def push(self): """Binds the request context to the current context.""" # Before we push the request context we have to ensure that there # is an application context. app_ctx = _app_ctx_stack.top if app_ctx is None or app_ctx.app != self.app: app_ctx = self.app.app_context() app_ctx.push() self._implicit_app_ctx_stack.append(app_ctx) else: self._implicit_app_ctx_stack.append(None) _request_ctx_stack.push(self) self.session = self.app.open_session(self.request) if self.session is None: self.session = self.app.make_null_session() def pop(self, exc=_sentinel): """Pops the request context and unbinds it by doing that. This will also trigger the execution of functions registered by the :meth:`~flask.Flask.teardown_request` decorator. """ app_ctx = self._implicit_app_ctx_stack.pop() try: clear_request = False if not self._implicit_app_ctx_stack: self.app.do_teardown_request(exc) request_close = getattr(self.request, 'close', None) if request_close is not None: request_close() clear_request = True finally: rv = _request_ctx_stack.pop() # get rid of circular dependencies at the end of the request # so that we don't require the GC to be active. if clear_request: rv.request.environ['werkzeug.request'] = None # Get rid of the app as well if necessary. if app_ctx is not None: app_ctx.pop(exc) def auto_pop(self, exc): if self.request.environ.get('flask._preserve_context') or \ (exc is not None and self.app.preserve_context_on_exception): self.preserved = True self._preserved_exc = exc else: self.pop(exc) def __enter__(self): self.push() return self def __exit__(self, exc_type, exc_value, tb): self.auto_pop(exc_value)
每个 request context 都保存了当前请求的信息,比如 request 对象和 app 对象。在初始化的最后,还调用了 match_request
实现了路由的匹配逻辑。
push
操作就是把该请求的 ApplicationContext
(如果 _app_ctx_stack
栈顶不是当前请求所在 app ,需要创建新的 app context) 和 RequestContext
有关的信息保存到对应的栈上,压栈后还会保存 session 的信息; pop
则相反,把 request context 和 application context 出栈,做一些清理性的工作。
到这里,上下文的实现就比较清晰了:每次有请求过来的时候,flask 会先创建当前线程或者进程需要处理的两个重要上下文对象,把它们保存到隔离的栈里面,这样视图函数进行处理的时候就能直接从栈上获取这些信息。
NOTE:因为 app 实例只有一个,因此多个 request
共享了 application context
。
到这里,关于 context 的实现和功能已经讲解得差不多了。还有两个疑惑没有解答。
- 为什么要把 request context 和 application context 分开?每个请求不是都同时拥有这两个上下文信息吗?
- 为什么 request context 和 application context 都有实现成栈的结构?每个请求难道会出现多个 request context 或者 application context 吗?
第一个答案是“灵活度”,第二个答案是“多 application”。虽然在实际运行中,每个请求对应一个 request context 和一个 application context,但是在测试或者 python shell 中运行的时候,用户可以单独创建 request context 或者 application context,这种灵活度方便用户的不同的使用场景;而且栈可以让 redirect 更容易实现,一个处理函数可以从栈中获取重定向路径的多个请求信息。application 设计成栈也是类似,测试的时候可以添加多个上下文,另外一个原因是 flask 可以 多个 application 同时运行 :
from werkzeug.wsgi import DispatcherMiddleware from frontend_app import application as frontend from backend_app import application as backend application = DispatcherMiddleware(frontend, { '/backend': backend })
这个例子就是使用 werkzeug
的 DispatcherMiddleware
实现多个 app 的分发,这种情况下 _app_ctx_stack
栈里会出现两个 application context。
Update: 为什么要用 LocalProxy
写完这篇文章之后,收到有位读者的疑问:为什么要使用 LocalProxy
?不使用 LocalProxy
直接访问 LocalStack
的对象会有什么问题吗?
这是个很好的问题,上面也确实没有很明确地给出这个答案。这里解释一下!
首先明确一点, Local
和 LocalStack
实现了不同线程/协程之间的数据隔离。在为什么用 LocalStack
而不是直接使用 Local
的时候,我们说过这是因为 flask 希望在测试或者开发的时候,允许多 app 、多 request 的情况。而 LocalProxy
也是因为这个才引入进来的!
我们拿 current_app = LocalProxy(_find_app)
来举例子。每次使用 current_app
的时候,他都会调用 _find_app
函数,然后对得到的变量进行操作。
如果直接使用 current_app = _find_app()
有什么区别呢?区别就在于,我们导入进来之后, current_app
就不会再变化了。如果有多 app 的情况,就会出现错误,比如:
from flask import current_app app = create_app() admin_app = create_admin_app() def do_something(): with app.app_context(): work_on(current_app) with admin_app.app_context(): work_on(current_app)
这里我们出现了嵌套的 app,每个 with 上下文都需要操作其对应的 app
,如果不适用 LocalProxy
是做不到的。
对于 request
也是类似!但是这种情况真的很少发生,有必要费这么大的功夫增加这么多复杂度吗?
其实还有一个更大的问题,这个例子也可以看出来。比如我们知道 current_app
是动态的,因为它背后对应的栈会 push 和 pop 元素进去。那刚开始的时候,栈一定是空的,只有在 with app.app_context()
这句的时候,才把栈数据 push 进去。而如果不采用 LocalProxy
进行转发,那么在最上面导入 from flask import current_app
的时候, current_app
就是空的,因为这个时候还没有把数据 push 进去,后面调用的时候根本无法使用。
所以为什么需要 LocalProxy
呢?简单总结一句话:因为上下文保存的数据是保存在栈里的,并且会动态发生变化。如果不是动态地去访问,会造成数据访问异常。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Koa源码阅读(二)上下文ctx
- Spring源码系列 —— 构造和初始化上下文
- DDD:识别限界上下文以及理解上下文映射
- DDD:识别限界上下文以及理解上下文映射
- 如何划分限界上下文
- 详解Flask上下文
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
现代操作系统(第3版)
Andrew S. Tanenbaum / 陈向群、马洪兵 / 机械工业出版社 / 2009-7 / 75.00元
本书是操作系统领域的经典之作,与第2版相比,增加了关于Linux、Windows Vista和Symbian操作系统的详细介绍。书中集中讨论了操作系统的基本原理,包括进程、线程、存储管理、文件系统、输入/输出、死锁等,同时还包含了有关计算机安全、多媒体操作系统、掌上计算机操作系统、微内核、多核处理机上的虚拟机以及操作系统设计等方面的内容。此外,还在第2版的基础上对部分习题进行了增删,更有助于读者学......一起来看看 《现代操作系统(第3版)》 这本书的介绍吧!