python3 第十八章 - 迭代器与生成器

栏目: Python · 发布时间: 6年前

内容简介:python3 第十八章 - 迭代器与生成器

1、迭代器

  • 迭代是访问集合元素的一种方式
  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
  • 迭代器有两个基本的方法:iter() 和 next()。

字符串,列表或元组对象都可用于创建迭代器:

实例1:

basket = ['apple', 'orange', 'pear', 'banana']

it = iter(basket)  # 创建迭代器对象

# 输出迭代器的下一个元素
print(next(it))

# 输出迭代器的下一个元素
print(next(it))

以上代码,输出:

apple
orange

实例2:

basket = 'abc'
it = iter(basket)  # 创建迭代器对象

print(next(it))  # 输出迭代器的下一个元素

print(next(it))  # 输出迭代器的下一个元素

以上代码,输出:

a
b

通常会和for语句搭配使用,如:

basket = 'abc'
it = iter(basket)  # 创建迭代器对象
for n in it:
    print(n)

以上代码,输出:

a
b
c

2、生成器

Python 中,使用了 yield 的函数被称为生成器(generator)。

  • 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
  • 在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。
def fibonacci(n):  # 生成器函数 - 斐波那契
    a, b, counter = 0, 1, 0
    while True:
        if counter > n:
            return
        yield a
        a, b = b, a + b
        counter += 1

f = fibonacci(10)  # f 是一个迭代器,由生成器返回生成

什么情况下需要使用 yield?一个函数 f,f 返回一个 list,这个 list 是动态计算出来的(不管是数学上的计算还是逻辑上的读取格式化),并且这个 list 会很大(无论是固定很大还是随着输入参数的增大而增大),这个时候,我们希望每次调用这个函数并使用迭代器进行循环的时候一个一个的得到每个 list 元素而不是直接得到一个完整的 list 来节省内存,这个时候 yield 就很有用。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

21天学通C语言

21天学通C语言

(美国)琼斯(Bradley L.Jones) (美国)埃特肯(Peter Aitken) / 信达工作室 / 人民邮电出版社 / 2012-8 / 69.00元

《21天学通C语言(第6版•修订版)》是初学者学习C语言的经典教程。本版按最新的标准(ISO∕IEC:9899-1999),以循序渐进的方式介绍了C语言编程方面知识,并提供了丰富的实例和大量的练习。通过学习实例,并将所学的知识用于完成练习,读者将逐步了解、熟悉并精通C语言。《21天学通C语言(第6版•修订版)》包括四周的课程。第一周的课程介绍了C语言程序的基本元素,包括变量、常量、语句、表达式、函......一起来看看 《21天学通C语言》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具