IEEE754标准的浮点数存储格式

栏目: Python · 发布时间: 6年前

内容简介:IEEE754标准的浮点数存储格式

基本存储格式(从高到低) : Sign + Exponent + Fraction

Sign : 符号位

Exponent : 阶码

Fraction : 有效数字

32位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :8 bits (第 30 至 23 共 8 个bits)

Fraction :23 bits (第 22 至 0 共 23 个bits)

32位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-127) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 130 (127 + 3),用二进制表示为: 10000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为: 01000001010010000000000000000000

即 : 0100 0001 0100 1000 0000 0000 0000 0000

用16进制表示 : 0x41480000

4、还原真值

Sign = bin(0) = 0

Exponent = bin(10000010) = 130

Fraction = bin(0.1001) = 2 ** (-1) + 2 ** (-4) = 0.5625

真值:

(-1) **0 * 2 **(130-127) * (1 + 0.5625) = 12.5

32位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/floatTest1.cpp

运行效果:

[root@localhost floatTest1]# ./floatToBin1
sizeof(float) : 4
sizeof(int) : 4
a = 12.500000
showFloat : 0x 41 48 00 00
UFP : 0,82,480000
b : 0x41480000
showIEEE754 a = 12.500000
showIEEE754 varTmp = 0x00c00000
showIEEE754 c = 0x00400000
showIEEE754 i = 19 , a1 = 1.000000 , showIEEE754 c = 00480000 , showIEEE754 b = 0x41000000
showIEEE754 i = 18 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 17 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 16 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 15 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 14 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 13 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 12 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 11 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 10 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 9 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 8 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 7 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 6 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 5 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 4 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 3 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 2 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 1 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 : 0x41480000
[root@localhost floatTest1]#

64位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :11 bits (第 62 至 52 共 11 个bits)

Fraction :52 bits (第 51 至 0 共 52 个bits)

64位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-1023) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 1026 (1023 + 3),用二进制表示为: 10000000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为:

0100000000101001000000000000000000000000000000000000000000000000

即 : 0100 0000 0010 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

用16进制表示 : 0x4029000000000000

4、还原真值

Sign = bin(0) = 0
Exponent = bin(10000000010) = 1026
Fraction = bin(0.1001) = 2 ** (-1) + 2 ** (-4) = 0.5625

真值:

(-1) **0 * 2 **(1026-1023) * (1 + 0.5625) = 12.5

64位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/doubleTest1.cpp

运行效果:

[root@localhost t1]# ./doubleToBin1
sizeof(double) : 8
sizeof(long) : 8
a = 12.500000
showDouble : 0x 40 29 00 00 00 00 00 00
UFP : 0,402,0
b : 0x0
showIEEE754 a = 12.500000
showIEEE754 logLen = 3
showIEEE754 c = 4620693217682128896(0x4020000000000000)
showIEEE754 b = 0x4020000000000000
showIEEE754 varTmp = 0x8000000000000
showIEEE754 c = 0x8000000000000
showIEEE754 i = 48 , a1 = 1.000000 , showIEEE754 c = 9000000000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 47 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 46 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 45 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 44 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 43 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 42 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 41 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 40 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 39 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 38 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 37 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 36 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 35 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 34 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 33 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 32 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 31 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 30 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 29 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 28 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 27 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 26 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 25 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 24 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 23 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 22 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 21 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 20 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 19 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 18 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 17 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 16 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 15 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 14 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 13 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 12 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 11 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 10 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 9 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 8 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 7 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 6 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 5 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 4 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 3 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 2 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 1 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 : 0x4029000000000000
[root@localhost t1]#

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据结构

数据结构

严蔚敏、吴伟民 / 清华大学出版社 / 2007-3-1 / 30.0

《数据结构》(C语言版)是为“数据结构”课程编写的教材,也可作为学习数据结构及其算法的C程序设计的参数教材。 本书的前半部分从抽象数据类型的角度讨论各种基本类型的数据结构及其应用;后半部分主要讨论查找和排序的各种实现方法及其综合分析比较。其内容和章节编排1992年4月出版的《数据结构》(第二版)基本一致,但在本书中更突出了抽象数据类型的概念。全书采用类C语言作为数据结构和算法的描述语言。 ......一起来看看 《数据结构》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具