IEEE754标准的浮点数存储格式

栏目: Python · 发布时间: 6年前

内容简介:IEEE754标准的浮点数存储格式

基本存储格式(从高到低) : Sign + Exponent + Fraction

Sign : 符号位

Exponent : 阶码

Fraction : 有效数字

32位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :8 bits (第 30 至 23 共 8 个bits)

Fraction :23 bits (第 22 至 0 共 23 个bits)

32位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-127) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 130 (127 + 3),用二进制表示为: 10000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为: 01000001010010000000000000000000

即 : 0100 0001 0100 1000 0000 0000 0000 0000

用16进制表示 : 0x41480000

4、还原真值

Sign = bin(0) = 0

Exponent = bin(10000010) = 130

Fraction = bin(0.1001) = 2 ** (-1) + 2 ** (-4) = 0.5625

真值:

(-1) **0 * 2 **(130-127) * (1 + 0.5625) = 12.5

32位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/floatTest1.cpp

运行效果:

[root@localhost floatTest1]# ./floatToBin1
sizeof(float) : 4
sizeof(int) : 4
a = 12.500000
showFloat : 0x 41 48 00 00
UFP : 0,82,480000
b : 0x41480000
showIEEE754 a = 12.500000
showIEEE754 varTmp = 0x00c00000
showIEEE754 c = 0x00400000
showIEEE754 i = 19 , a1 = 1.000000 , showIEEE754 c = 00480000 , showIEEE754 b = 0x41000000
showIEEE754 i = 18 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 17 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 16 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 15 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 14 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 13 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 12 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 11 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 10 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 9 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 8 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 7 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 6 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 5 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 4 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 3 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 2 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 1 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 : 0x41480000
[root@localhost floatTest1]#

64位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :11 bits (第 62 至 52 共 11 个bits)

Fraction :52 bits (第 51 至 0 共 52 个bits)

64位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-1023) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 1026 (1023 + 3),用二进制表示为: 10000000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为:

0100000000101001000000000000000000000000000000000000000000000000

即 : 0100 0000 0010 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

用16进制表示 : 0x4029000000000000

4、还原真值

Sign = bin(0) = 0
Exponent = bin(10000000010) = 1026
Fraction = bin(0.1001) = 2 ** (-1) + 2 ** (-4) = 0.5625

真值:

(-1) **0 * 2 **(1026-1023) * (1 + 0.5625) = 12.5

64位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/doubleTest1.cpp

运行效果:

[root@localhost t1]# ./doubleToBin1
sizeof(double) : 8
sizeof(long) : 8
a = 12.500000
showDouble : 0x 40 29 00 00 00 00 00 00
UFP : 0,402,0
b : 0x0
showIEEE754 a = 12.500000
showIEEE754 logLen = 3
showIEEE754 c = 4620693217682128896(0x4020000000000000)
showIEEE754 b = 0x4020000000000000
showIEEE754 varTmp = 0x8000000000000
showIEEE754 c = 0x8000000000000
showIEEE754 i = 48 , a1 = 1.000000 , showIEEE754 c = 9000000000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 47 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 46 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 45 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 44 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 43 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 42 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 41 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 40 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 39 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 38 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 37 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 36 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 35 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 34 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 33 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 32 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 31 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 30 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 29 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 28 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 27 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 26 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 25 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 24 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 23 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 22 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 21 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 20 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 19 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 18 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 17 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 16 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 15 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 14 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 13 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 12 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 11 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 10 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 9 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 8 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 7 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 6 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 5 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 4 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 3 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 2 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 1 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 : 0x4029000000000000
[root@localhost t1]#

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

后现代经济

后现代经济

姜奇平 / 中信出版社 / 2009-7 / 45.00元

《后现代经济:网络时代的个性化和多元化》站在历史“终结”与“开始”的切换点上,以价值、交换、货币、资本、组织、制度、福利等方面为线索,扬弃现代性经济学,对工业化进行反思,深刻剖析了“一切坚固的东西都烟消云散”的局限性,在此基础上展开对现代性经济的解构和建构。“9·11”中坚固的世贸中心大楼灰飞烟灭,2008年坚固的华尔街投资神话彻底破灭,坚固的雷曼兄弟公司在挺立了158年后烟消云散……一切坚固的东......一起来看看 《后现代经济》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

在线进制转换器
在线进制转换器

各进制数互转换器

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换