内容简介:Python-- Redis Set
一、无序集合
Set操作,Set集合就是不允许重复的列表
1.1 sadd(name, values)
# name对应的集合中添加元素
1.2 smembers(name)
# 获取name对应的集合的所有成员 r.sadd('s1', 't1', 't2', 't3', 't1') print(r.smembers('s1')) # 输出 {b't1', b't2', b't3'} # 集合是去重的
1.3 scard(name)
#获取name对应的集合中元素个数 print(r.scard('s1')) #输出 3
1.4 sdiff(keys, *args)
# 在第一个name对应的集合中且不在其他name对应的集合的元素集合 print(r.smembers('s1')) print(r.smembers('s2')) print(r.sdiff('s1', 's2')) #输出 {b't3', b't1', b't2'} {b't1', b't5', b't4'} {b't3', b't2'} # 集合s1中的 t2 和 t3 不在s2中
1.5 sdiffstore(dest, keys, *args)
# 获取第一个name对应的集合中且不在其他name对应的集合, #再将其新加入到dest对应的集合中 print('s1:', r.smembers('s1')) print('s2:', r.smembers('s2')) r.sdiffstore('s3', 's1', 's2') print('s3:', r.smembers('s3')) #输出 s1: {b't1', b't3', b't2'} s2: {b't4', b't5', b't1'} s3: {b't3', b't2'}
1.6 sinter(keys, *args)
# 获取多个集合的交集 print('s1:', r.smembers('s1')) print('s2:', r.smembers('s2')) print('交集:', r.sinter('s1', 's2')) #输出 s1: {b't2', b't1', b't3'} s2: {b't1', b't4', b't5'} 交集: {b't1'}
1.7 sinterstore(dest, keys, *args)
# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中 print('s1:', r.smembers('s1')) print('s2:', r.smembers('s2')) r.sinterstore('s4', 's1', 's2') print('s4:', r.smembers('s4')) #输出 s1: {b't3', b't2', b't1'} s2: {b't1', b't5', b't4'} s4: {b't1'}
1.8 sismember(name, value)
# 检查value是否是name对应的集合的成员 print(r.sismember('s1', 't1')) print(r.sismember('s1', 't5')) #输出 True False
1.9 smove(src, dst, value)
# 将某个成员从一个集合中移动到另外一个集合 print('s1:', r.smembers('s1')) print('s2:', r.smembers('s2')) r.smove('s1', 's2', 't2') print('s1:', r.smembers('s1')) print('s2:', r.smembers('s2')) # 输出 s1: {b't2', b't1', b't3'} s2: {b't4', b't1', b't5'} s1: {b't1', b't3'} s2: {b't4', b't2', b't1', b't5'}
1.10 spop(name)
# 从集合的右侧(尾部)移除一个成员,并将其返回 print('s1:', r.smembers('s1')) r.spop('s1') print('s1:', r.smembers('s1')) #输出 s1: {b't1', b't3'} s1: {b't1'}
1.11 srandmember(name, numbers)
# 从name对应的集合中随机获取 numbers 个元素 print('s2:', r.smembers('s2')) print(r.srandmember('s2', 3)) #输出,从s2中随机获取3个数 s2: {b't5', b't2', b't1', b't4'} [b't5', b't2', b't1']
1.12 srem(name, values)
# 在name对应的集合中删除某些值 print('s2:', r.smembers('s2')) r.srem('s2', 't5') print('s2:', r.smembers('s2')) #输出 s2: {b't2', b't1', b't5', b't4'} s2: {b't2', b't1', b't4'}
1.13 sunion(keys, *args)
# 获取多一个name对应的集合的并集 print(r.smembers('s3')) print(r.smembers('s4')) print(r.sunion('s3', 's4')) #输出 {b't3', b't2'} {b't1'} {b't1', b't3', b't2'}
1.14 sunionstore(dest,keys, *args)
# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中 print('s3:', r.smembers('s3')) print('s4:', r.smembers('s4')) r.sunionstore('s6', 's3', 's4') print('s6:', r.smembers('s6')) #输出 s3: {b't2', b't3'} s4: {b't1'} s6: {b't2', b't1', b't3'}
1.15 sscan(name, cursor=0, match=None, count=None)
# 分片获取数据 print('test_info:', r.smembers('test_info')) print(r.sscan('test_info', 0, match='J*')) # 输出 test_info: {b'Jerry', b'Jack', b'Tom', b'Sam'} (0, [b'Jack', b'Jerry'])
1.16 sscan_iter(name, match=None, count=None)
# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大
二、有序集合
有序集合,在集合的基础上,为每元素排序;元素的 排序 需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。
2.1 zadd(name, *args, **kwargs)
# 在name对应的有序集合中添加元素 # 如: # zadd('zz', 'n1', 1, 'n2', 2) # 或 # zadd('zz', n1=11, n2=22) r.zadd('z1', 't1', 10, 't2', 5, 't3', 4, 't4', 8)
2.2 zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)
# 按照索引范围获取name对应的有序集合的元素 # 参数: # name,redis的name # start,有序集合索引起始位置(非分数) # end,有序集合索引结束位置(非分数) # desc,排序规则,默认按照分数从小到大排序 # withscores,是否获取元素的分数,默认只获取元素的值 # score_cast_func,对分数进行数据转换的函数 # 更多: # 从大到小排序 # zrevrange(name, start, end, withscores=False, score_cast_func=float) # 按照分数范围获取name对应的有序集合的元素 # zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float) # 从大到小排序 # zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float) print(r.zrange('z1', 0, -1)) print(r.zrange('z1', 0, -1, withscores=True)) #输出 [b't3', b't2', b't4', b't1'] [(b't3', 4.0), (b't2', 5.0), (b't4', 8.0), (b't1', 10.0)]
2.3 zcard(name)
# 获取name对应的有序集合元素的数量 print(r.zcard('z1')) #输出 4
2.4 zcount(name, min, max)
# 获取name对应的有序集合中分数 在 [min,max] 之间的个数 print(r.zrange('z1', 0, -1, withscores=True)) print(r.zcount('z1', 5, 8)) #输出 2
2.5 zincrby(name, value, amount)
# name 对应的有序集合中的value分数增加 amount print(r.zrange('z1', 0, -1, withscores=True)) print(r.zincrby('z1', 't3', 6)) print(r.zrange('z1', 0, -1, withscores=True)) #输出 [(b't3', 4.0), (b't2', 5.0), (b't4', 8.0), (b't1', 10.0)] 10.0 [(b't2', 5.0), (b't4', 8.0), (b't1', 10.0), (b't3', 10.0)]
2.6 zrank(name, value)
# 获取某个值在 name对应的有序集合中的排行(从 0 开始) # 更多: # zrevrank(name, value),从大到小排序 print(r.zrange('z1', 0, -1, withscores=True)) print(r.zrank('z1', 't1')) print(r.zrevrank('z1', 't1')) #输出 [(b't2', 5.0), (b't4', 8.0), (b't1', 10.0), (b't3', 10.0)] 2 1
2.7 zrem(name, values)
# 删除name对应的有序集合中值是values的成员 # 如:zrem('zz', ['s1', 's2']) print(r.zrange('z1', 0, -1, withscores=True)) r.zrem('z1', 't1') print(r.zrange('z1', 0, -1, withscores=True)) #输出 [(b't2', 5.0), (b't4', 8.0), (b't1', 10.0), (b't3', 10.0)] [(b't2', 5.0), (b't4', 8.0), (b't3', 10.0)
2.8 zremrangebyrank(name, min, max)
# 根据排行范围删除,不在该范围内的都删除 r.zremrangebyrank('z1', 1, 6) print(r.zrange('z1', 0, -1, withscores=True)) #输出 [(b't2', 5.0)]
2.9 zremrangebyscore(name, min, max)
# 根据分数范围删除 print(r.zrange('z1', 0, -1, withscores=True)) r.zremrangebyscore('z1', 1, 6) print(r.zrange('z1', 0, -1, withscores=True)) #输出 [(b't3', 4.0), (b't2', 5.0), (b't4', 8.0), (b't1', 10.0)] [(b't4', 8.0), (b't1', 10.0)]
2.10 zscore(name, value)
# 获取name对应有序集合中 value 对应的分数 print(r.zrange('z1', 0, -1, withscores=True)) print(r.zscore('z1', 't1')) #输出 [(b't4', 8.0), (b't1', 10.0)] 10.0
2.11 zinterstore(dest, keys, aggregate=None)
# 获取两个有序集合的交集,如果遇到相同值,则按照aggregate进行操作 # aggregate的值为: SUM MIN MAX 默认 SUM print('z2:', r.zrange('z2', 0, -1, withscores=True)) print('z3:', r.zrange('z3', 0, -1, withscores=True)) r.zinterstore('z6', {'z2', 'z3'}) print('z6:', r.zrange('z6', 0, -1, withscores=True)) # 输出 z2: [(b't3', 4.0), (b't2', 5.0), (b't4', 8.0), (b't1', 10.0)] z3: [(b't3', 2.0), (b't1', 6.0), (b't2', 7.0), (b't4', 12.0)] z6: [(b't3', 6.0), (b't2', 12.0), (b't1', 16.0), (b't4', 20.0)]
print('z2:', r.zrange('z2', 0, -1, withscores=True)) print('z3:', r.zrange('z3', 0, -1, withscores=True)) r.zinterstore('z7', {'z2', 'z3'}, aggregate='MIN') print('z7:', r.zrange('z7', 0, -1, withscores=True)) r.zinterstore('z8', {'z2', 'z3'}, aggregate='MAX') print('z8:', r.zrange('z8', 0, -1, withscores=True)) # 输出 z2: [(b't3', 4.0), (b't2', 5.0), (b't4', 8.0), (b't1', 10.0)] z3: [(b't3', 2.0), (b't1', 6.0), (b't2', 7.0), (b't4', 12.0)] z7: [(b't3', 2.0), (b't2', 5.0), (b't1', 6.0), (b't4', 8.0)] z8: [(b't3', 4.0), (b't2', 7.0), (b't1', 10.0), (b't4', 12.0)]
如果其中两个集合中个数不符合,则单独的那个值不会进行运算
2.12 zunionstore(dest, keys, aggregate=None)
print('z2:', r.zrange('z2', 0, -1, withscores=True)) print('z3:', r.zrange('z3', 0, -1, withscores=True)) r.zunionstore('z10', {'z2', 'z3'}) print('z10:', r.zrange('z10', 0, -1, withscores=True)) #输出 z2: [(b't3', 4.0), (b't2', 5.0), (b't4', 8.0)] z3: [(b't3', 2.0), (b't1', 6.0), (b't2', 7.0), (b't4', 12.0)] z10: [(b't1', 6.0), (b't3', 6.0), (b't2', 12.0), (b't4', 20.0)]
2.13 zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
2.14 zscan_iter(name, match=None, count=None,score_cast_func=float)
# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作
以上所述就是小编给大家介绍的《Python-- Redis Set》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Functional Programming in Scala
Paul Chiusano、Rúnar Bjarnason / Softbound print / 2014-9-14 / USD 44.99
Functional programming (FP) is a programming style emphasizing functions that return consistent and predictable results regardless of a program's state. As a result, functional code is easier to test ......一起来看看 《Functional Programming in Scala》 这本书的介绍吧!