内容简介:Python的ThreadLocal(线程本地变量)实现
目录
[root@iZj6chejzrsqpclb7miryaZ ~]# cat test.py # coding: utf8 from threading import current_thread, Thread, local, Lock class MyThreadLocal(local): def __init__(self, name="default"): self.name = name # 在主线程,创建一个线程本地变量,它可以被所有的线程共享 my_local = MyThreadLocal() lock = Lock() def log(): with lock: print "[Thread: %s]my_local.name = %s" % ( current_thread().getName(), my_local.name) my_local.name = current_thread().getName() log() def func(): my_local.name = current_thread().getName() log() thread = Thread(target=func) thread.start() thread.join() log() [root@iZj6chejzrsqpclb7miryaZ ~]# python test.py [Thread: MainThread]my_local.name = MainThread [Thread: Thread-1]my_local.name = Thread-1 [Thread: MainThread]my_local.name = MainThread
ThreadLocal变量[]
ThreadLocal变量,也就是线程本地变量, 它会为每个使用该变量的线程维护一个变量的副本,在某个线程中,对该变量的修改,只会改变自己的副本,不会影响其他的线程的副本 。
找到标准库threading的源代码:
[root@iZj6chejzrsqpclb7miryaZ ~]# python -c "import threading; print threading" <module 'threading' from '/usr/lib64/python2.7/threading.pyc'>
在源代码中,搜索 local
,可以看到:
1204 # get thread-local implementation, either from the thread 1205 # module, or from the python fallback 1206 1207 try: 1208 from thread import _local as local 1209 except ImportError: 1210 from _threading_local import local
也就是说,如果Thread模块已经实现了thread-local的话,那么就使用Thread模块的实现,否则使用纯 Python 实现: _threading_local.local
。
在Python 2.7.5中,Thread模块已经实现了thread-local,所以是不会使用Python的实现的。但是为了学习,我们看看Python实现的源代码。
[root@iZj6chejzrsqpclb7miryaZ ~]# python -c "import _threading_local as tl; print tl" <module '_threading_local' from '/usr/lib64/python2.7/_threading_local.pyc'>
因为代码只有一百多行,所以,全部贴进来了,并使用注释对源代码进行解读,阅读之前,建议先过一下这两篇文档:
_threading_local
模块的源代码如下:
# 所有 ThreadLocal对象 都是local或其子类的实例,而local继承自_localbase这个类 class _localbase(object): # __slots__用来限制对象所能拥有的属性,它只对新式类生效,并且可以看到_localbase就是继承了object的新式类 __slots__ = '_local__key', '_local__args', '_local__lock' # 构造方法 def __new__(cls, *args, **kw): # 创建ThreadLocal对象 self = object.__new__(cls) # key是与对象自身的id相关的,所以具有唯一性 key = '_local__key', 'thread.local.' + <strong>str(id(self))</strong> object.__setattr__(self, '_local__key', key) # 将传递给构造方法的参数保存起来,为其他线程创建副本的时候,会使用这些参数再次执行__init__方法 object.__setattr__(self, '_local__args', (args, kw)) # 用于线程间同步的锁对象 object.__setattr__(self, '_local__lock', RLock()) if (args or kw) and (cls.__init__ is object.__init__): raise TypeError("Initialization arguments are not supported") # We need to create the thread dict in anticipation of # __init__ being called, to make sure we don't call it # again ourselves. # 让当前线程对象的 <em>key</em>属性 指向 ThreadLocal对象的属性字典 # + 在__new__执行完之后,<strong>会自动的调用__init__</strong>, # + 对对象的属性进行初始化,而这些属性会被放到对象的属性字典中 dict = object.__getattribute__(self, '__dict__') current_thread().__dict__[key] = dict return self # 总结:在创建ThreadLocal对象的时候,会给它增加三个属性:用来唯一标识对象的key;传递给构造方法的参数;用于线程间同步的锁。 # + 然后让当前线程对象的<em>key属性</em> 指向 ThreadLocal对象的属性字典。 def _patch(self): # 获取唯一标识对象的key key = object.__getattribute__(self, '_local__key') # 获取当前线程对象的<em>key属性</em>所指向的属性字典 d = current_thread().__dict__.get(key) # 如果d是None,则表示当前线程是第一次访问该ThreadLocal对象, # + 此时,为它创建一个属于它的副本 if d is None: # 1,生成一个新的空字典,然后让对象的属性字典 和 当前线程对象的<em>key属性</em>都指向它 d = {} current_thread().__dict__[key] = d object.__setattr__(self, '__dict__', d) # 2,使用初始化时的参数,再次调用__init__方法。__init__方法会向该属性字典填充属性 # we have a new instance dict, so call out __init__ if we have # one cls = type(self) if cls.__init__ is not object.__init__: args, kw = object.__getattribute__(self, '_local__args') cls.__init__(self, *args, **kw) # 线程对象 的 副本 初始化完成 # 如果d不是None,则将当前线程的副本,设置为ThreadLocal对象的属性字典 else: object.__setattr__(self, '__dict__', d) # 总结:_patch的作用就是,如果当前线程的副本还没被创建,则通过重新执行__init__方法为线程创建一个, # + 最后,将线程的副本,设置成ThreadLocal对象的属性字典,之所以这么做, # + 是因为<strong>后续的操作(比如获取属性、设置属性、删除属性)都是 通过对ThreadLocal对象的属性的操作 来完成的</strong> class local(_localbase): def __getattribute__(self, name): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__getattribute__(self, name) finally: lock.release() def __setattr__(self, name, value): if name == '__dict__': raise AttributeError( "%r object attribute '__dict__' is read-only" % self.__class__.__name__) lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__setattr__(self, name, value) finally: lock.release() def __delattr__(self, name): if name == '__dict__': raise AttributeError( "%r object attribute '__dict__' is read-only" % self.__class__.__name__) lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__delattr__(self, name) finally: lock.release() # 析构方法 def __del__(self): import threading # 获取唯一标识对象的key key = object.__getattribute__(self, '_local__key') # 获取所有启动,但是没有停止的线程 try: # We use the non-locking API since we might already hold the lock # (__del__ can be called at any point by the cyclic GC). threads = threading._enumerate() except: # If enumerating the current threads fails, as it seems to do # during shutdown, we'll skip cleanup under the assumption # that there is nothing to clean up. return # 对每一个线程,删除它的属性字典中的值为<em>key</em>的属性, # + 也就是,释放掉线程的副本 for thread in threads: try: __dict__ = thread.__dict__ except AttributeError: # Thread is dying, rest in peace. continue if key in __dict__: try: del __dict__[key] except KeyError: pass # didn't have anything in this thread from threading import current_thread, RLock
-
在该Python实现中,会不会内存泄漏?
不会,因为每个线程对应一个副本字典,当在该线程中 获取、设置、删除 ThreadLocal对象的属性时,会先通过_patch函数,将线程的副本字典,设置成ThreadLocal对象的属性字典,然后对ThreadLocal对象的属性的操作,实际上就是对副本字典的操作。
当线程结束,线程对象被销毁时,副本字典的引用计数也会随之减少,最后被GC掉。
-
该Python实现有什么弊端?
线程本地变量的好处之一应该是:让多个线程之间对该变量的操作彼此独立,避免因锁而产生的性能消耗。但是该实现采用了锁来同步多个线程的操作。
下面是本人的一个实现:
[root@iZj6chejzrsqpclb7miryaZ ~]# cat my_thread_local.py # coding: utf8 from threading import current_thread from weakref import proxy import functools # 因为dict不支持weakref,所以自定义一个map类型 class _MyMap(object): def __init__(self, map=None, **kw): self._map = {} if map: self._map.update(map) self._map.update(kw) def __setitem__(self, k, v): self._map[k] = v def __getitem__(self, k): if k not in self._map: raise AttributeError("no attribute: %s" % str(k)) return self._map[k] def __delitem__(self, k): self._map.pop(k, None) def _callback(my_map, map, key): print "[map=%s, key=%s]" % (map, key) map.pop(key, None) def _patch(self): thread = current_thread() ident = thread.ident map = object.__getattribute__(self, "_local__map") if not map.get(ident): my_map = _MyMap(object.__getattribute__(self, "_local__kwargs")) map[ident] = proxy(my_map, functools.partial(_callback, map=map, key=ident)) thread.__dict__[ object.__getattribute__(self, "_local__key") ] = my_map return map[ident] class local(object): __slots__ = "_local__key", "_local__kwargs", "_local__map" def __new__(cls, *a, **kw): self = object.__new__(cls) key = cls.__name__, \ str(id(self)) object.__setattr__(self, "_local__key", key) object.__setattr__(self, "_local__kwargs", kw) object.__setattr__(self, "_local__map", {}) return self def __setattr__(self, name, value): my_map = _patch(self) my_map[name] = value def __getattribute__(self, name): my_map = _patch(self) return my_map[name] def __delattr__(self, name): my_map = _patch(self) delattr(my_map, name) [root@iZj6chejzrsqpclb7miryaZ ~]# cat test.py # coding: utf8 from threading import current_thread, Thread, Lock from my_thread_local import local class MyThreadLocal(local): def __init__(self, name="default"): self.name = name # 在主线程,创建一个线程本地变量,它可以被所有的线程共享 my_local = MyThreadLocal() lock = Lock() def log(): with lock: print "[Thread: %s]my_local.name = %s" % ( current_thread().getName(), my_local.name) my_local.name = current_thread().getName() log() def func(): my_local.name = current_thread().getName() log() thread = Thread(target=func) thread.start() thread.join() log() [root@iZj6chejzrsqpclb7miryaZ ~]# python test.py [Thread: MainThread]my_local.name = MainThread [Thread: Thread-1]my_local.name = Thread-1 [Thread: MainThread]my_local.name = MainThread [map={139912237799232: <weakproxy at 0x7f3fdb26f890 to _MyMap at 0x7f3fdb264b90>, 139912099251968: <weakproxy at 0x7f3fdb26f940 to NoneType at 0x7f3fdb172f20>}, key=139912099251968] [map={139912237799232: <weakproxy at 0x7f3fdb26f890 to NoneType at 0x7f3fdb172f20>}, key=139912237799232]
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Python多线程-共享全局变量
- c# – 线程安全和局部变量
- Hystrix 跨线程共享变量 原 荐
- C++多线程中的锁和条件变量使用
- 并发原理抽丝剥茧,线程本地变量 ThreadLocal 的实现原理
- C++11多线程-条件变量(std::condition_variable)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Intel汇编语言程序设计
Kip Irvine / 电子工业出版社 / 2007-9-1 / 61.00元
《国外计算机科学教材系列•Intel汇编语言程序设计(第5版)》全面细致地讲述了汇编语言程序设计的各个方面。从微处理器体系结构、工作机制到指令集;从最基本的编译器链器的使用到高级过程、结构和宏的使用;从用纯汇编编写程序到用C/C++等最新编译器与汇编的混合接口编程;从16位实模式下BIOS、DOS实模式文本及图形程序设计到32位保护模式的Windows程序设计;从磁盘基础知识到Intel指令编码、......一起来看看 《Intel汇编语言程序设计》 这本书的介绍吧!