Python的ThreadLocal(线程本地变量)实现

栏目: Python · 发布时间: 7年前

内容简介:Python的ThreadLocal(线程本地变量)实现

目录

[root@iZj6chejzrsqpclb7miryaZ ~]# cat test.py 
# coding: utf8

from threading import current_thread, Thread, local, Lock

class MyThreadLocal(local):
    def __init__(self, name="default"):
        self.name = name

# 在主线程,创建一个线程本地变量,它可以被所有的线程共享
my_local = MyThreadLocal()
lock = Lock()

def log():
    with lock:
        print "[Thread: %s]my_local.name = %s" % (
            current_thread().getName(), my_local.name)

my_local.name = current_thread().getName()
log()

def func():
    my_local.name = current_thread().getName()
    log()

thread = Thread(target=func)

thread.start()
thread.join()

log()
[root@iZj6chejzrsqpclb7miryaZ ~]# python test.py 
[Thread: MainThread]my_local.name = MainThread
[Thread: Thread-1]my_local.name = Thread-1
[Thread: MainThread]my_local.name = MainThread

ThreadLocal变量[]

ThreadLocal变量,也就是线程本地变量, 它会为每个使用该变量的线程维护一个变量的副本,在某个线程中,对该变量的修改,只会改变自己的副本,不会影响其他的线程的副本

找到标准库threading的源代码:

[root@iZj6chejzrsqpclb7miryaZ ~]# python -c "import threading; print threading"
<module 'threading' from '/usr/lib64/python2.7/threading.pyc'>

在源代码中,搜索 local ,可以看到:

1204 # get thread-local implementation, either from the thread
1205 # module, or from the python fallback
1206 
1207 try:
1208     from thread import _local as local
1209 except ImportError:
1210     from _threading_local import local

也就是说,如果Thread模块已经实现了thread-local的话,那么就使用Thread模块的实现,否则使用纯 Python 实现: _threading_local.local

在Python 2.7.5中,Thread模块已经实现了thread-local,所以是不会使用Python的实现的。但是为了学习,我们看看Python实现的源代码。

[root@iZj6chejzrsqpclb7miryaZ ~]# python -c "import _threading_local as tl; print tl"
<module '_threading_local' from '/usr/lib64/python2.7/_threading_local.pyc'>

因为代码只有一百多行,所以,全部贴进来了,并使用注释对源代码进行解读,阅读之前,建议先过一下这两篇文档:

_threading_local 模块的源代码如下:

# 所有 ThreadLocal对象 都是local或其子类的实例,而local继承自_localbase这个类
class _localbase(object):
    # __slots__用来限制对象所能拥有的属性,它只对新式类生效,并且可以看到_localbase就是继承了object的新式类
    __slots__ = '_local__key', '_local__args', '_local__lock'

    # 构造方法
    def __new__(cls, *args, **kw):
        # 创建ThreadLocal对象
        self = object.__new__(cls)

        # key是与对象自身的id相关的,所以具有唯一性
        key = '_local__key', 'thread.local.' + <strong>str(id(self))</strong>
        object.__setattr__(self, '_local__key', key)

        # 将传递给构造方法的参数保存起来,为其他线程创建副本的时候,会使用这些参数再次执行__init__方法
        object.__setattr__(self, '_local__args', (args, kw))

        # 用于线程间同步的锁对象
        object.__setattr__(self, '_local__lock', RLock())

        if (args or kw) and (cls.__init__ is object.__init__):
            raise TypeError("Initialization arguments are not supported")

        # We need to create the thread dict in anticipation of
        # __init__ being called, to make sure we don't call it
        # again ourselves.

        # 让当前线程对象的 <em>key</em>属性 指向 ThreadLocal对象的属性字典
        # + 在__new__执行完之后,<strong>会自动的调用__init__</strong>,
        # + 对对象的属性进行初始化,而这些属性会被放到对象的属性字典中
        dict = object.__getattribute__(self, '__dict__')
        current_thread().__dict__[key] = dict

        return self
# 总结:在创建ThreadLocal对象的时候,会给它增加三个属性:用来唯一标识对象的key;传递给构造方法的参数;用于线程间同步的锁。
# + 然后让当前线程对象的<em>key属性</em> 指向 ThreadLocal对象的属性字典。

def _patch(self):
    # 获取唯一标识对象的key
    key = object.__getattribute__(self, '_local__key')
    # 获取当前线程对象的<em>key属性</em>所指向的属性字典
    d = current_thread().__dict__.get(key)

    # 如果d是None,则表示当前线程是第一次访问该ThreadLocal对象,
	# + 此时,为它创建一个属于它的副本
    if d is None:
        # 1,生成一个新的空字典,然后让对象的属性字典 和 当前线程对象的<em>key属性</em>都指向它
        d = {}
        current_thread().__dict__[key] = d
        object.__setattr__(self, '__dict__', d)


        # 2,使用初始化时的参数,再次调用__init__方法。__init__方法会向该属性字典填充属性
        # we have a new instance dict, so call out __init__ if we have
        # one
        cls = type(self)
        if cls.__init__ is not object.__init__:
            args, kw = object.__getattribute__(self, '_local__args')
            cls.__init__(self, *args, **kw)
        
        # 线程对象 的 副本 初始化完成

    # 如果d不是None,则将当前线程的副本,设置为ThreadLocal对象的属性字典
    else:
        object.__setattr__(self, '__dict__', d)
# 总结:_patch的作用就是,如果当前线程的副本还没被创建,则通过重新执行__init__方法为线程创建一个,
# + 最后,将线程的副本,设置成ThreadLocal对象的属性字典,之所以这么做,
# + 是因为<strong>后续的操作(比如获取属性、设置属性、删除属性)都是 通过对ThreadLocal对象的属性的操作 来完成的</strong>

class local(_localbase):

    def __getattribute__(self, name):
        lock = object.__getattribute__(self, '_local__lock')
        lock.acquire()
        try:
            _patch(self)
            return object.__getattribute__(self, name)
        finally:
            lock.release()

    def __setattr__(self, name, value):
        if name == '__dict__':
            raise AttributeError(
                "%r object attribute '__dict__' is read-only"
                % self.__class__.__name__)
        lock = object.__getattribute__(self, '_local__lock')
        lock.acquire()
        try:
            _patch(self)
            return object.__setattr__(self, name, value)
        finally:
            lock.release()

    def __delattr__(self, name):
        if name == '__dict__':
            raise AttributeError(
                "%r object attribute '__dict__' is read-only"
                % self.__class__.__name__)
        lock = object.__getattribute__(self, '_local__lock')
        lock.acquire()
        try:
            _patch(self)
            return object.__delattr__(self, name)
        finally:
            lock.release()

    # 析构方法
    def __del__(self):
        import threading

        # 获取唯一标识对象的key
        key = object.__getattribute__(self, '_local__key')

        # 获取所有启动,但是没有停止的线程
        try:
            # We use the non-locking API since we might already hold the lock
            # (__del__ can be called at any point by the cyclic GC).
            threads = threading._enumerate()
        except:
            # If enumerating the current threads fails, as it seems to do
            # during shutdown, we'll skip cleanup under the assumption
            # that there is nothing to clean up.
            return

        # 对每一个线程,删除它的属性字典中的值为<em>key</em>的属性,
        # + 也就是,释放掉线程的副本
        for thread in threads:
            try:
                __dict__ = thread.__dict__
            except AttributeError:
                # Thread is dying, rest in peace.
                continue

            if key in __dict__:
                try:
                    del __dict__[key]
                except KeyError:
                    pass # didn't have anything in this thread

from threading import current_thread, RLock
  • 在该Python实现中,会不会内存泄漏?

    不会,因为每个线程对应一个副本字典,当在该线程中 获取、设置、删除 ThreadLocal对象的属性时,会先通过_patch函数,将线程的副本字典,设置成ThreadLocal对象的属性字典,然后对ThreadLocal对象的属性的操作,实际上就是对副本字典的操作。

    当线程结束,线程对象被销毁时,副本字典的引用计数也会随之减少,最后被GC掉。

  • 该Python实现有什么弊端?
    线程本地变量的好处之一应该是:让多个线程之间对该变量的操作彼此独立,避免因锁而产生的性能消耗。但是该实现采用了锁来同步多个线程的操作。
    下面是本人的一个实现:
[root@iZj6chejzrsqpclb7miryaZ ~]# cat my_thread_local.py
# coding: utf8

from threading import current_thread
from weakref import proxy
import functools

# 因为dict不支持weakref,所以自定义一个map类型
class _MyMap(object):
    def __init__(self, map=None, **kw):
        self._map = {}
        if map:
            self._map.update(map)
        self._map.update(kw)

    def __setitem__(self, k, v):
        self._map[k] = v

    def __getitem__(self, k):
        if k not in self._map:
            raise AttributeError("no attribute: %s" % str(k))
        return self._map[k]

    def __delitem__(self, k):
        self._map.pop(k, None)

def _callback(my_map, map, key):
    print "[map=%s, key=%s]" % (map, key)
    map.pop(key, None)

def _patch(self):
    thread = current_thread()
    ident = thread.ident
    map = object.__getattribute__(self, "_local__map")

    if not map.get(ident):
        my_map = _MyMap(object.__getattribute__(self, "_local__kwargs"))
        map[ident] = proxy(my_map,
            functools.partial(_callback, map=map, key=ident))
        thread.__dict__[
                object.__getattribute__(self, "_local__key")
            ] = my_map
    return map[ident]

class local(object):
    __slots__ = "_local__key", "_local__kwargs", "_local__map"

    def __new__(cls, *a, **kw):
        self = object.__new__(cls)

        key = cls.__name__, \
            str(id(self))
        object.__setattr__(self, "_local__key", key)
        object.__setattr__(self, "_local__kwargs", kw)
        object.__setattr__(self, "_local__map", {})

        return self

    def __setattr__(self, name, value):
        my_map = _patch(self)
        my_map[name] = value

    def __getattribute__(self, name):
        my_map = _patch(self)
        return my_map[name]

    def __delattr__(self, name):
        my_map = _patch(self)
        delattr(my_map, name)

[root@iZj6chejzrsqpclb7miryaZ ~]# cat test.py 
# coding: utf8

from threading import current_thread, Thread, Lock

from my_thread_local import local 

class MyThreadLocal(local):
    def __init__(self, name="default"):
        self.name = name

# 在主线程,创建一个线程本地变量,它可以被所有的线程共享
my_local = MyThreadLocal()
lock = Lock()

def log():
    with lock:
        print "[Thread: %s]my_local.name = %s" % (
            current_thread().getName(), my_local.name)

my_local.name = current_thread().getName()
log()

def func():
    my_local.name = current_thread().getName()
    log()

thread = Thread(target=func)

thread.start()
thread.join()

log()
[root@iZj6chejzrsqpclb7miryaZ ~]# python test.py 
[Thread: MainThread]my_local.name = MainThread
[Thread: Thread-1]my_local.name = Thread-1
[Thread: MainThread]my_local.name = MainThread
[map={139912237799232: <weakproxy at 0x7f3fdb26f890 to _MyMap at 0x7f3fdb264b90>, 139912099251968: <weakproxy at 0x7f3fdb26f940 to NoneType at 0x7f3fdb172f20>}, key=139912099251968]
[map={139912237799232: <weakproxy at 0x7f3fdb26f890 to NoneType at 0x7f3fdb172f20>}, key=139912237799232]

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

大转换

大转换

尼古拉斯·卡尔 / 闫鲜宁、张付国 / 中信 / 2016-2 / 49

1、我们这个时代最清醒的思考者之一尼古拉斯·卡尔继《浅薄》《玻璃笼子》之后又一重磅力作。 2、在这部跨越历史、经济和技术领域的著作中,作者从廉价的电力运营方式对社会变革的深刻影响延伸到互联网对我们生活的这个世界的重构性影响。 3、《快公司》《金融时报》《华尔街日报》联袂推荐 简介 早在2003年,尼古拉斯·卡尔先生发表在《哈佛商业评论》上的一篇文章——IT Doesn't ......一起来看看 《大转换》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具