图算法|Dijkstra算法python实现

栏目: Python · 发布时间: 7年前

内容简介:图算法|Dijkstra算法python实现

01

Dijkstra算法的理论部分

关于Dijkstra算法的原理部分,请参考之前的推送:

图算法|Dijkstra最短路径算法

Dijkstra算法总结如下:

1. 此算法是计算从入度为0的起始点开始的单源最短路径算法,它能计算从源点到图中任何一点的最短路径,假定起始点为A

2. 选取一个中心点center,是S集合中的最后一个元素,注意起始点到这个点的最短距离已经计算出来,并存储在dist字典中了。

3. 因为已经求出了从A->center的最短路径,所以每次迭代只需要找出center->{有关系的节点nodei}的最短距离,如果两者的和小于dist(A->nodei),则找到一条更短的路径。

02

代码实现

"""

Dijkstra algorithm

graphdict={"A":[("B",6),("C",3)], "B":[("C",2),("D",5)],"C":[("B",2),("D",3),("E",4)],\

"D":[("B",5),("C",3),("E",2),("F",3)],"E":[("C",4),("D",2),("F",5)],"F":[("D",3),"(E",5)]})

assert: start node must be zero in-degree

"""

def Dijkstra(startNode, endNode, graphdict=None):

S=[startNode]

V=[]

for node in graphdict.keys():

if node !=startNode:

V.append(node)

#distance dict from startNode

dist={}

for node in V:

dist[node]=float('Inf')

while len(V)>0:

center = S[-1] # get final node for S as the new center node

minval = ("None",float("Inf"))

for node,d in graphdict[center]:

if node not in V:

continue

#following is the key logic.If S length is bigger than 1,need to get the final ele of S, which is the center point in current

#iterator, and distance between start node and center node is startToCenterDist; d is distance between node

# among out-degree for center point; dist[node] is previous distance to start node, possibly Inf or a updated value

# so if startToCenterDist+d is less than dist[node], then it shows we find a shorter distance.

if len(S)==1:

dist[node] = d

else:

startToCenterDist = dist[center]

if startToCenterDist + d < dist[node]:

dist[node] = startToCenterDist + d

#this is the method to find a new center node and

# it's the minimum distance among out-degree nodes for center node

if d < minval[1]:

minval = (node,d)

V.remove(minval[0])

S.append(minval[0]) # append node with min val

return dist

03

测试

图算法|Dijkstra算法 <a href='https://www.codercto.com/topics/20097.html'>python</a> 实现

求出以上图中,从A到各个节点的最短路径:

shortestRoad = Dijkstra ("A","F",graphdict={"A":[("B",6),("C",3)], "B":[("C",2),("D",5)],\

"C":[("B",2),("D",3),("E",4)],\

"D":[("B",5),("C",3),("E",2),("F",3)],\

"E":[("C",4),("D",2),("F",5)],"F":[("D",3),("E",5)]})

mystr = "shortest distance from A begins to "

for key,shortest in shortestRoad.items():

print(mystr+ str(key) +" is: " + str(shortest) )

打印结果如下:

shortest distance from A begins to B is: 5
shortest distance from A begins to C is: 3
shortest distance from A begins to D is: 6
shortest distance from A begins to E is: 7
shortest distance from A begins to F is: 9

点击阅读原文,去我的github库下载代码。


以上所述就是小编给大家介绍的《图算法|Dijkstra算法python实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法分析-有效的学习方法(影印版)

算法分析-有效的学习方法(影印版)

Jeffrey J.McConnell / 高等教育出版社 / 2003-03-01 / 28.0

本书主要目标是提高读者关于算法对程序效率的影响等问题的认知水平,并培养读者分析程序中的算法所必需的技巧。各章材料以激发读者有效的、协同的学习方法的形式讲述。通过全面的论述和完整的数学推导,本书帮助读者最大限度地理解基本概念。 本书内容包括促使学生参与其中的大量程序设计课题。书中所有算法以伪码形式给出,使得具备条件表达式、循环与递归方面知识的读者均易于理解。本书以简洁的写作风格向读者介绍了兼具......一起来看看 《算法分析-有效的学习方法(影印版)》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

MD5 加密
MD5 加密

MD5 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换