内容简介:图算法|Dijkstra算法python实现
01
—
Dijkstra算法的理论部分
关于Dijkstra算法的原理部分,请参考之前的推送:
Dijkstra算法总结如下:
1. 此算法是计算从入度为0的起始点开始的单源最短路径算法,它能计算从源点到图中任何一点的最短路径,假定起始点为A
2. 选取一个中心点center,是S集合中的最后一个元素,注意起始点到这个点的最短距离已经计算出来,并存储在dist字典中了。
3. 因为已经求出了从A->center的最短路径,所以每次迭代只需要找出center->{有关系的节点nodei}的最短距离,如果两者的和小于dist(A->nodei),则找到一条更短的路径。
02
—
代码实现
"""
Dijkstra algorithm
graphdict={"A":[("B",6),("C",3)], "B":[("C",2),("D",5)],"C":[("B",2),("D",3),("E",4)],\
"D":[("B",5),("C",3),("E",2),("F",3)],"E":[("C",4),("D",2),("F",5)],"F":[("D",3),"(E",5)]})
assert: start node must be zero in-degree
"""
def Dijkstra(startNode, endNode, graphdict=None):
S=[startNode]
V=[]
for node in graphdict.keys():
if node !=startNode:
V.append(node)
#distance dict from startNode
dist={}
for node in V:
dist[node]=float('Inf')
while len(V)>0:
center = S[-1] # get final node for S as the new center node
minval = ("None",float("Inf"))
for node,d in graphdict[center]:
if node not in V:
continue
#following is the key logic.If S length is bigger than 1,need to get the final ele of S, which is the center point in current
#iterator, and distance between start node and center node is startToCenterDist; d is distance between node
# among out-degree for center point; dist[node] is previous distance to start node, possibly Inf or a updated value
# so if startToCenterDist+d is less than dist[node], then it shows we find a shorter distance.
if len(S)==1:
dist[node] = d
else:
startToCenterDist = dist[center]
if startToCenterDist + d < dist[node]:
dist[node] = startToCenterDist + d
#this is the method to find a new center node and
# it's the minimum distance among out-degree nodes for center node
if d < minval[1]:
minval = (node,d)
V.remove(minval[0])
S.append(minval[0]) # append node with min val
return dist
03
—
测试
求出以上图中,从A到各个节点的最短路径:
shortestRoad = Dijkstra ("A","F",graphdict={"A":[("B",6),("C",3)], "B":[("C",2),("D",5)],\
"C":[("B",2),("D",3),("E",4)],\
"D":[("B",5),("C",3),("E",2),("F",3)],\
"E":[("C",4),("D",2),("F",5)],"F":[("D",3),("E",5)]})
mystr = "shortest distance from A begins to "
for key,shortest in shortestRoad.items():
print(mystr+ str(key) +" is: " + str(shortest) )
打印结果如下:
shortest distance from A begins to B is: 5 shortest distance from A begins to C is: 3 shortest distance from A begins to D is: 6 shortest distance from A begins to E is: 7 shortest distance from A begins to F is: 9
点击阅读原文,去我的github库下载代码。
以上所述就是小编给大家介绍的《图算法|Dijkstra算法python实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 算法:经典排序算法的 Go 实现
- js实现数据结构及算法之排序算法
- 算法 - 06 | 链表(上):如何实现LRU缓存淘汰算法?
- Twitter雪花算法SnowFlake算法的java实现
- js实现多种排序算法(算法导论第二章)
- 数据结构与算法——常用排序算法及其Java实现
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Spring实战(第4版)
Craig Walls 沃尔斯 / 张卫滨 / 人民邮电出版社 / 2016-4-1 / CNY 89.00
《Spring实战(第4版)》是经典的、畅销的Spring学习和实践指南。 第4版针对Spring 4进行了全面更新。全书分为四部分。第1部分介绍Spring框架的核心知识。第二部分在此基础上介绍了如何使用Spring构建Web应用程序。第三部分告别前端,介绍了如何在应用程序的后端使用Spring。第四部分描述了如何使用Spring与其他的应用和服务进行集成。 《Spring实战(第4......一起来看看 《Spring实战(第4版)》 这本书的介绍吧!