HashMap内部原理解析

栏目: Java · 发布时间: 6年前

内容简介:HashMap内部原理解析

HashMap 在平时 Java/Android 开发中,是绝大多数开发者都普遍使用的集合类。

它内部是基于哈希表实现的键值对存储,继承 AbstractMap 并且实现了 Map 接口。

而对于它的 get/put 使用方法相信大家都已经到了炉火纯青的地步。虽然都会用,却可能没有好好深入探讨过 HashMap 内部的实现原理。正好趁着有时间,今天就给大家一步步地解析 HashMap 的内部实现原理。

在这就基于了 Java 1.7 的源代码来讲解了,Java 1.8 的 HashMap 源码相比 Java 1.7 做了一些改动。具体的改动等到我们最后再说。

HashMap 必知

以下是 HashMap 源码里面的一些关键成员变量以及知识点。在后面的源码解析中会遇到,所以我们有必要先了解下。

  1. initialCapacity:初始容量。指的是 HashMap 集合初始化的时候自身的容量。可以在构造方法中指定;如果不指定的话,总容量默认值是 16 。需要注意的是初始容量必须是 2 的幂次方。
  2. size:当前 HashMap 中已经存储着的键值对数量,即 HashMap.size()
  3. loadFactor:加载因子。所谓的加载因子就是 HashMap (当前的容量/总容量) 到达一定值的时候,HashMap 会实施扩容。加载因子也可以通过构造方法中指定,默认的值是 0.75 。举个例子,假设有一个 HashMap 的初始容量为 16 ,那么扩容的阀值就是 0.75 * 16 = 12 。也就是说,在你打算存入第 13 个值的时候,HashMap 会先执行扩容。
  4. threshold:扩容阀值。即 扩容阀值 = HashMap 总容量 * 加载因子。当前 HashMap 的容量大于或等于扩容阀值的时候就会去执行扩容。扩容的容量为当前 HashMap 总容量的两倍。比如,当前 HashMap 的总容量为 16 ,那么扩容之后为 32 。
  5. table:Entry 数组。我们都知道 HashMap 内部存储 key/value 是通过 Entry 这个介质来实现的。而 table 就是 Entry 数组。
  6. 在 Java 1.7 中,HashMap 的实现方法是数组 + 链表的形式。上面的 table 就是数组,而数组中的每个元素,都是链表的第一个结点。即如下图所示:
    HashMap内部原理解析

源码分析

构造方法

// 默认的构造方法使用的都是默认的初始容量和加载因子
// DEFAULT_INITIAL_CAPACITY = 16,DEFAULT_LOAD_FACTOR = 0.75
public HashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}

// 可以指定初始容量,并且使用默认的加载因子
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap(int initialCapacity, float loadFactor) {
    // 对初始容量的值判断
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    // 设置加载因子
    this.loadFactor = loadFactor;
    threshold = initialCapacity;
    // 空方法
    init();
}

HashMap 的所有构造方法最后都会去调用 HashMap(int initialCapacity, float loadFactor) 。在其内部去设置初始容量和加载因子。而最后的 init() 是空方法。

put 方法

public V put(K key, V value) {
    // 如果 table 数组为空时先创建数组,并且设置扩容阀值
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 如果 key 为空时,调用 putForNullKey 方法特殊处理
    if (key == null)
        return putForNullKey(value);
    // 计算 key 的哈希值
    int hash = hash(key);
    // 根据计算出来的哈希值和当前数组的长度计算在数组中的索引
    int i = indexFor(hash, table.length);
    // 先遍历该数组索引下的整条链表
    // 如果该 key 之前已经在 HashMap 中存储了的话,直接替换对应的 value 值即可
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    // 如果该 key 之前没有被存储过,那么就进入 addEntry 方法
    addEntry(hash, key, value, i);
    return null;
}

看了上面 put 方法的代码,大致分为了以下几个步骤:

  1. 如果 table 数组为空时先创建数组,并且设置扩容阀值;
  2. 如果 key 为空时,调用 putForNullKey 方法特殊处理;
  3. 计算 key 的哈希值;
  4. 根据第三步计算出来的哈希值和当前数组的长度来计算得到该 key 在数组中的索引,其实索引最后的值就等于 hash%table.length
  5. 遍历该数组索引下的整条链表,如果之前已经有一样的 key ,那么直接覆盖 value ;
  6. 如果该 key 之前没有,那么就进入 addEntry 方法。

下面就来看一下 addEntry 方法。

void addEntry(int hash, K key, V value, int bucketIndex) {
    // 当前容量大于或等于扩容阀值的时候,会执行扩容
    if ((size >= threshold) && (null != table[bucketIndex])) {
        // 扩容为原来容量的两倍
        resize(2 * table.length);
        // 重新计算哈希值
        hash = (null != key) ? hash(key) : 0;
        // 重新得到在新数组中的索引
        bucketIndex = indexFor(hash, table.length);
    }
    // 创建节点
    createEntry(hash, key, value, bucketIndex);
}

在 addEntry 方法中,有两个注意点需要我们去看:

  1. 如果当前 HashMap 的存储容量到达阀值的时候,会去进行 resize(int newCapacity) 扩容;
  2. 在 createEntry 方法中增加新的节点。

我们先去 resize 方法中看看是怎么扩容的。

void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }
    // 创建新的 entry 数组
    Entry[] newTable = new Entry[newCapacity];
    // 将旧 entry 数组中的数据复制到新 entry 数组中
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    // 将新数组的引用赋给 table
    table = newTable;
    // 计算新的扩容阀值
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

根据代码可以知道,扩容就是创建了一个新的数组,然后把数据全部复制过去,再把新数组的引用赋给 table 。

剩下的还有一个 createEntry 方法。

void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    // 当前 HashMap 的容量加 1
    size++;
}

创建节点的方法中,如果发现 e 是空的,之前没有存值,那么直接把值存进去就行了;如果是之前 e 有值的,即发生 hash 碰撞的情况,就以单链表头插入的方式存储。

get 方法

public V get(Object key) {
    // 如果 key 是空的,就调用 getForNullKey 方法特殊处理
    if (key == null)
        return getForNullKey();
    // 获取 key 相对应的 entry 
    Entry<K,V> entry = getEntry(key);

    return null == entry ? null : entry.getValue();
}

在 get 方法中,获取 value 主要步骤是 getEntry(key)

final Entry<K,V> getEntry(Object key) {
    if (size == 0) {
        return null;
    }
    // 计算 key 的哈希值
    int hash = (key == null) ? 0 : hash(key);
    // 得到数组的索引,然后遍历链表,查看是否有相同 key 的 Entry
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    // 没有的话,返回 null
    return null;
}

getEntry(Object key) 方法很简单,就是找到对应 key 的数组索引,然后遍历链表查找即可。

Java 1.8 中 HashMap 的不同

  1. 在 Java 1.8 中,如果链表的长度超过了 8 ,那么链表将转化为红黑树;
  2. 发生 hash 碰撞时,Java 1.7 会在链表头部插入,而 Java 1.8 会在链表尾部插入;
  3. 在 Java 1.8 中,Entry 被 Node 代替(换了一个马甲)。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

智能商业

智能商业

曾鸣 / 中信出版集团 / 2018-11 / 68.00

《智能商业》由马云作序推荐。《智能商业》是阿里巴巴集团前总参谋长曾鸣,对互联网时代的重要趋势做出革命性解读的作品,披露了其对于未来商业模式的思考和判断。 2006年,曾鸣教授加入阿里巴巴集团,参与阿里巴巴集团及各重要业务线,如淘宝、支付宝、阿里云计算、菜鸟等的发展,被业界称为阿里的“军师”。 基于在阿里巴巴集团十几年的实践经验,以及对互联网、大数据和人工智能的深入思考,曾鸣教授在《智能......一起来看看 《智能商业》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具