PyTorch 1.6 发布:原生支持自动混合精度训练并进入稳定阶段

栏目: 软件资讯 · 发布时间: 4年前

内容简介:PyTorch 1.6 稳定版已发布,此版本增加了许多新的 API、用于性能改进和性能分析的工具、以及对基于分布式数据并行(Distributed Data Parallel, DDP)和基于远程过程调用(Remote Procedure Call, RPC)的分布式训练的...

PyTorch 1.6 稳定版已发布,此版本增加了许多新的 API、用于性能改进和性能分析的 工具 、以及对基于分布式数据并行(Distributed Data Parallel, DDP)和基于远程过程调用(Remote Procedure Call, RPC)的分布式训练的重大更新。部分更新亮点包括:

  • 原生支持自动混合精度训练(automatic mixed-precision training),并已进入稳定阶段
  • 为 tensor-aware 增加对 TensorPipe 的原生支持
  • 在前端 API 增加了对 complex tensor 的支持
  • 新的分析工具提供了张量级的内存消耗信息
  • 针对分布式数据并行训练和远程过程调用的多项改进和新功能

此外,从该版本起,新功能的状态将分为三种,分别是稳定、Beta 和原型。原型功能即为新功能提案,团队如果能从用户获取对此的良好反馈,那么原型功能就会进入 Beta 阶段,否则就停止开发。另外,原型功能不包含在二进制发行版中,而是通过从 Nightly 版本源代码构建或通过 compiler flag 使用。详情查看此博客

PyTorch 1.6 发布:原生支持自动混合精度训练并进入稳定阶段

原生支持自动混合精度训练

由 Nvidia 贡献的自动混合精度训练功能已经进入稳定阶段,AMP 训练能在 Tensor Core GPU 上实现更高的性能并节省多达 50% 的内存。

AMP API 提供方便使用混合精度的方法。官方提到,在像线性层(Linear Layer)或是卷积操作上,float16 运算较快,但像 Reduction 运算又需要 float32 的动态范围,而现在有了 AMP 功能,便可以在部分运算操作使用 float16,另一部分则使用 float32,混合精度功能会尝试为每个运算使用相匹配的数据类型。

改进分布式训练

PyTorch 支持两种强大的范式:用于对模型进行完全同步数据并行训练的 DDP 和支持分布式模型并行的 RPC 框架。过去这两个功能独立运行,用户无法混合和匹配它们来尝试混合并行范式。

从 PyTorch 1.6 开始,DDP 和 RPC 可以无缝协作,用户可以结合这两种技术来实现数据并行和模型并行。官方举了一个例子,用户希望将大型嵌入表放置在参数服务器上,并使用 RPC 框架嵌入查找,但希望将较小的密集参数存储在训练器上,并使用 DDP 来同步密集参数,下面是示例代码:

// On each trainer

remote_emb = create_emb(on="ps", ...)
ddp_model = DDP(dense_model)

for data in batch:
   with torch.distributed.autograd.context():
      res = remote_emb(data)
      loss = ddp_model(res)
      torch.distributed.autograd.backward([loss])

支持 Complex Tensor

PyTorch 1.6 带来了对 complex tensor 的 Beta 支持,包含 torch.complex64 和 torch.complex128 dtypes 两种类型。Beta 阶段支持通用的 PyTorch 和 complex tensor,以及 Torchaudio、ESPnet 等所需的功能。

>>> x = torch.randn(2,2, dtype=torch.cfloat)
>>> x
tensor([[-0.4621-0.0303j, -0.2438-0.5874j],
     [ 0.7706+0.1421j,  1.2110+0.1918j]])

详情查看 https://pytorch.org/blog/pytorch-1.6-released/


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Bulletproof Web Design

Bulletproof Web Design

Dan Cederholm / New Riders Press / 28 July, 2005 / $39.99

No matter how visually appealing or packed with content a Web site is, it isn't succeeding if it's not reaching the widest possible audience. Designers who get this guide can be assured their Web site......一起来看看 《Bulletproof Web Design》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具