The Surprisingly Effective Genetic Approach to Feature Selection

栏目: IT技术 · 发布时间: 5年前

The Surprisingly Effective Genetic Approach to Feature Selection

In genetic algorithms, a population of candidate solutions, also known as individuals, creatures, or phenotypes, are evolved towards better solutions in an optimization problem. Each candidate has a set of properties that can be mutated and altered.

These properties can be represented as a binary string (a sequences of zeroes and ones), but there exist other encodings. In the case of feature selection, each individual represents one selection of features, and each ‘property’ represents one feature, which can be turned on or off (1 or 0).

The evolution of individuals begins with a random generated population, meaning each’s properties are randomly initialized. Evolution is an iterative process, and the population in each iteration is referred to as a generation. In a genetic feature selection in a dataset with 900 columns, an initial population may consist of 300 individuals, or randomly generated combinations of on/off switches.

In each generation, the fitness, which is the function of the problem being solved, of each individual is evaluated.

One direct fitness function would be to simply evaluate the accuracy of a model when trained on that subset of data, or another of many possible model metrics . This can be a bit costly, though, so it should only be used with small datasets or populations.

An alternative is use a variety of cheaper-to-access metrics that can assist in evaluating the fitness of each solution. Some include:

  • Collinearity. Make sure that features in a subset do not contain similar information by evaluating the overall correlation of each subset.
  • Entropy / separability. With the current dataset, how well separated are the classes? The more separable the data, the better it is.
  • Hybrid. Combine these metrics with others like variance or how normally distributed the data is to yield a combination that satisfies the needs of the model.

With some controllable randomness injected to stimulate proper evolutionary discovery, individuals on the fitter side (scoring a better on the fitness function) are randomly selected. Randomness is added and ranking is not based on pure highest score because that would allow for little exploration and is not how evolution is conducted in the real biological world.

Request for deletion

About

MC.AI – Aggregated news about artificial intelligence

MC.AI collects interesting articles and news about artificial intelligence and related areas. The contributions come from various open sources and are presented here in a collected form.

The copyrights are held by the original authors, the source is indicated with each contribution.

Contributions which should be deleted from this platform can be reported using the appropriate form (within the contribution).

MC.AI is open for direct submissions, we look forward to your contribution!

Search on MC.AI

mc.ai aggregates articles from different sources - copyright remains at original authors


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

美团机器学习实践

美团机器学习实践

美团算法团队 / 人民邮电出版社 / 2018-8-1 / 79.00元

人工智能技术正以一种超快的速度深刻地改变着我们的生活,引导了第四次工业革命。美团作为国内O2O领域领 先的服务平台,结合自身的业务场景和数据,积极进行了人工智能领域的应用探索。在美团的搜索、推荐、计算广告、风控、图像处理等领域,相关的人工智能技术得到广泛的应用。本书包括通用流程、数据挖掘、搜索和推荐、计算广告、深度学习以及算法工程6大部分内容,全面介绍了美团在多个重要方面对机器学习的应用。 ......一起来看看 《美团机器学习实践》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具