The Surprisingly Effective Genetic Approach to Feature Selection

栏目: IT技术 · 发布时间: 4年前

The Surprisingly Effective Genetic Approach to Feature Selection

In genetic algorithms, a population of candidate solutions, also known as individuals, creatures, or phenotypes, are evolved towards better solutions in an optimization problem. Each candidate has a set of properties that can be mutated and altered.

These properties can be represented as a binary string (a sequences of zeroes and ones), but there exist other encodings. In the case of feature selection, each individual represents one selection of features, and each ‘property’ represents one feature, which can be turned on or off (1 or 0).

The evolution of individuals begins with a random generated population, meaning each’s properties are randomly initialized. Evolution is an iterative process, and the population in each iteration is referred to as a generation. In a genetic feature selection in a dataset with 900 columns, an initial population may consist of 300 individuals, or randomly generated combinations of on/off switches.

In each generation, the fitness, which is the function of the problem being solved, of each individual is evaluated.

One direct fitness function would be to simply evaluate the accuracy of a model when trained on that subset of data, or another of many possible model metrics . This can be a bit costly, though, so it should only be used with small datasets or populations.

An alternative is use a variety of cheaper-to-access metrics that can assist in evaluating the fitness of each solution. Some include:

  • Collinearity. Make sure that features in a subset do not contain similar information by evaluating the overall correlation of each subset.
  • Entropy / separability. With the current dataset, how well separated are the classes? The more separable the data, the better it is.
  • Hybrid. Combine these metrics with others like variance or how normally distributed the data is to yield a combination that satisfies the needs of the model.

With some controllable randomness injected to stimulate proper evolutionary discovery, individuals on the fitter side (scoring a better on the fitness function) are randomly selected. Randomness is added and ranking is not based on pure highest score because that would allow for little exploration and is not how evolution is conducted in the real biological world.

Request for deletion

About

MC.AI – Aggregated news about artificial intelligence

MC.AI collects interesting articles and news about artificial intelligence and related areas. The contributions come from various open sources and are presented here in a collected form.

The copyrights are held by the original authors, the source is indicated with each contribution.

Contributions which should be deleted from this platform can be reported using the appropriate form (within the contribution).

MC.AI is open for direct submissions, we look forward to your contribution!

Search on MC.AI

mc.ai aggregates articles from different sources - copyright remains at original authors


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

从零开始做产品经理

从零开始做产品经理

萧七公子 / 中国华侨出版社 / 2016-12-1 / 27.9

《从零开始做产品经理:产品经理的第一本书》根据产品经理的能力需求与成长体系,共分为八章内容,从了解产品开始,到挖掘用户需求、进行产品设计、管理团队、进行项目管理、产品运营、把握产品的生命周期,以及产品经理的成长路径,全面阐释了产品经理的修炼之道。《从零开始做产品经理:产品经理的第一本书》书中信息量大,图文并茂,论点与论据相得益彰,并且融合了丰富的案例与故事,使得整个阅读过程妙趣横生而且迅速开“悟道......一起来看看 《从零开始做产品经理》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具