内容简介:本文收录在个人博客:之前不是做了个开源项目嘛,在做完其实最近对写文章有点小抵触,写的东西没人看,总有点小失落,好在有同行大佬们的开导让我重拾了信心。调整了自己的心态,只要我分享的东西对大家有帮助就好,至于多少人看那就随缘吧!
本文收录在个人博客: www.chengxy-nds.top ,技术资源共享。
之前不是做了个开源项目嘛,在做完 GitHub 登录后,想着再显得有逼格一点,说要再加个人脸识别登录,就我这佛系的开发进度,过了一周总算是抽时间安排上了。
源码在文末
其实最近对写文章有点小抵触,写的东西没人看,总有点小失落,好在有同行大佬们的开导让我重拾了信心。调整了自己的心态,只要我分享的东西对大家有帮助就好,至于多少人看那就随缘吧!
废话不多说先看人脸识别效果动态,马赛克有点重哈,没办法长相实在是拿不出手。
实现原理
我们看一下实现人脸识别登录的大致流程,三个主要步骤:
- 前端登录页打开摄像头,进行人脸识别, 注意 :只识别画面中是不是有人脸
- 识别到人脸后,拍照上传当前画面图片
- 后端接受图片并调用人脸库SDK,对人像进行比对,通过则登录成功,并将人像信息注册到人脸库和本地
mysql。
前端实现
上边说过要在前端识别到人脸,所以这里就不得不借助 工具 了,我使用的 tracking.js ,一款轻量级的前端人脸识别框架。
前端 Vue 代码实现逻辑比较简单, tracking.js 打开摄像头识别到人脸信息后,对视频图像拍照,将图片信息上传到后台,等待图片对比的结果就可以了。
data() {
return {
showContainer: true, // 显示
tracker: null,
tipFlag: false, // 提示用户已经检测到
flag: false, // 判断是否已经拍照
context: null, // canvas上下文
removePhotoID: null, // 停止转换图片
scanTip: '人脸识别中...',// 提示文字
imgUrl: '', // base64格式图片
canvas: null
}
},
mounted() {
this.playVideo()
},
methods: {
playVideo() {
var video = document.getElementById('video');
this.canvas = document.getElementById('canvas');
this.context = this.canvas.getContext('2d');
this.tracker = new tracking.ObjectTracker('face');
this.tracker.setInitialScale(4);
this.tracker.setStepSize(2);
this.tracker.setEdgesDensity(0.1);
tracking.track('#video', this.tracker, {camera: true});
this.tracker.on('track', this.handleTracked);
},
handleTracked(event) {
this.context.clearRect(0, 0, this.canvas.width, this.canvas.height);
if (event.data.length === 0) {
this.scanTip = '未识别到人脸'
} else {
if (!this.tipFlag) {
this.scanTip = '识别成功,正在拍照,请勿乱动~'
}
// 1秒后拍照,仅拍一次
if (!this.flag) {
this.scanTip = '拍照中...'
this.flag = true
this.removePhotoID = setTimeout(() => {
this.tackPhoto()
this.tipFlag = true
},
2000
)
}
event.data.forEach(this.plot);
}
},
plot(rect){
this.context.strokeStyle = '#eb652e';
this.context.strokeRect(rect.x, rect.y, rect.width, rect.height);
this.context.font = '11px Helvetica';
this.context.fillStyle = "#fff";
this.context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11);
this.context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22);
},
// 拍照
tackPhoto() {
this.context.drawImage(this.$refs.refVideo, 0, 0, 500, 500)
// 保存为base64格式
this.imgUrl = this.saveAsPNG(this.$refs.refCanvas)
var formData = new FormData();
formData.append("file", this.imgUrl);
this.scanTip = '登录中,请稍等~'
axios({
method: 'post',
url: '/faceDiscern',
data: formData,
}).then(function (response) {
alert(response.data.data);
window.location.href="http://127.0.0.1:8081/home";
}).catch(function (error) {
console.log(error);
});
this.close()
},
// 保存为png,base64格式图片
saveAsPNG(c) {
return c.toDataURL('image/png', 0.3)
},
// 关闭并清理资源
close() {
this.flag = false
this.tipFlag = false
this.showContainer = false
this.tracker && this.tracker.removeListener('track', this.handleTracked) && tracking.track('#video', this.tracker, {camera: false});
this.tracker = null
this.context = null
this.scanTip = ''
clearTimeout(this.removePhotoID)
}
}
人脸识别
之前也搞过一个人脸识别案例 《基于 Java 实现的人脸识别功能(附源码)》 ,不过调用SDK的方式太过繁琐,而且代码量巨大。所以这次为了简化实现,改用了百度的人脸识别API,没想到出乎意料的简单。
别抬杠问我为啥不自己写人脸识别工具,别问,问就是不会
在百度云注册一个应用 https://console.bce.baidu.com/ai/?_=1595996996657&fromai=1#/ai/face/app/list ,得到 API Key 和 Secret Key ,为了后续获取 token 用。
百度云人脸识别的API非常友好,各种操作的 demo都写好了,拿过来简单改改就可以。
第一步先获取 token ,这是调用百度人脸识别 API 的基础。
https://aip.baidubce.com/oauth/2.0/token? grant_type=client_credentials& client_id=【百度云应用的AK】& client_secret=【百度云应用的SK】
接下来我们开始对图片进行比对,百度云提供了一个在线的人脸库,用户登录我们先在人脸库查询人像是否存在,存在则表示登录成功,如果不存在则注册到人脸库。每个图片有一个唯一标识 face_token 。
百度人脸识别 API 实现比较简单,需要特别注意参数 image_type ,它有三种类型
-
BASE64:图片的base64值,base64编码后的图片数据,编码后的图片大小不超过2M; -
URL:图片的URL地址( 可能由于网络等原因导致下载图片时间过长); -
FACE_TOKEN:人脸图片的唯一标识,调用人脸检测接口时,会为每个人脸图片赋予一个唯一的
FACE_TOKEN,同一张图片多次检测得到的FACE_TOKEN是同一个。
而我们这里使用的是图片 BASE64 文件,所以 image_type 要设置成 BASE64 。
@Override
public BaiDuFaceSearchResult faceSearch(String file) {
try {
byte[] decode = Base64.decode(Base64Util.base64Process(file));
String faceFile = Base64Util.encode(decode);
Map<String, Object> map = new HashMap<>();
map.put("image", faceFile);
map.put("liveness_control", "NORMAL");
map.put("group_id_list", "user");
map.put("image_type", "BASE64");
map.put("quality_control", "LOW");
String param = GsonUtils.toJson(map);
String result = HttpUtil.post(faceSearchUrl, this.getAccessToken(), "application/json", param);
BaiDuFaceSearchResult searchResult = JSONObject.parseObject(result, BaiDuFaceSearchResult.class);
log.info(" faceSearch: {}", JSON.toJSONString(searchResult));
return searchResult;
} catch (Exception e) {
log.error("get faceSearch error {}", e.getStackTrace());
e.getStackTrace();
}
return null;
}
@Override
public BaiDuFaceDetectResult faceDetect(String file) {
try {
byte[] decode = Base64.decode(Base64Util.base64Process(file));
String faceFile = Base64Util.encode(decode);
Map<String, Object> map = new HashMap<>();
map.put("image", faceFile);
map.put("face_field", "faceshape,facetype");
map.put("image_type", "BASE64");
String param = GsonUtils.toJson(map);
String result = HttpUtil.post(faceDetectUrl, this.getAccessToken(), "application/json", param);
BaiDuFaceDetectResult detectResult = JSONObject.parseObject(result, BaiDuFaceDetectResult.class);
log.info(" detectResult: {}", JSON.toJSONString(detectResult));
return detectResult;
} catch (Exception e) {
log.error("get faceDetect error {}", e.getStackTrace());
e.getStackTrace();
}
return null;
}
@Override
public BaiDuFaceAddResult addFace(String file, UserFaceInfo userFaceInfo) {
try {
byte[] decode = Base64.decode(Base64Util.base64Process(file));
String faceFile = Base64Util.encode(decode);
Map<String, Object> map = new HashMap<>();
map.put("image", faceFile);
map.put("group_id", "user");
map.put("user_id", userFaceInfo.getUserId());
map.put("user_info", JSON.toJSONString(userFaceInfo));
map.put("liveness_control", "NORMAL");
map.put("image_type", "BASE64");
map.put("quality_control", "LOW");
String param = GsonUtils.toJson(map);
String result = HttpUtil.post(addfaceUrl, this.getAccessToken(), "application/json", param);
BaiDuFaceAddResult addResult = JSONObject.parseObject(result, BaiDuFaceAddResult.class);
log.info("addResult: {}", JSON.toJSONString(addResult));
return addResult;
} catch (Exception e) {
log.error("get addFace error {}", e.getStackTrace());
e.getStackTrace();
}
return null;
}
项目是前后端分离的,但为了大家学习方便,我把人脸识别页面整合到了后端项目。
最后 run FireControllerApplication 访问地址: http://localhost :8082/face 即可。
源码 GitHub 地址: https://github.com/chengxy-nds/fire.git ,欢迎大家来耍~
原创不易,燃烧秀发输出内容,如果有一丢丢收获,点个赞鼓励一下吧!
习惯在VX看技术文章,想要获取更多Java资源的同学,可以关注我的公众号: 程序员内点事 ,暗号:[ 666 ]
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 我跑了ERNIE和BERT两个模型,结果出乎意料......
- 出乎意料的结果:容器与虚拟机到底谁更安全?
- 2018 Python 开发者调查报告发布,数据出乎你意料吗?
- 2018 Python 开发者调查报告发布,数据出乎你意料吗?
- Dalvik 和 ART 有什么区别?深扒 Android 虚拟机发展史,真相却出乎意料!
- 人脸专集(三):人脸关键点检测(下)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Data Structures and Algorithms
Alfred V. Aho、Jeffrey D. Ullman、John E. Hopcroft / Addison Wesley / 1983-1-11 / USD 74.20
The authors' treatment of data structures in Data Structures and Algorithms is unified by an informal notion of "abstract data types," allowing readers to compare different implementations of the same......一起来看看 《Data Structures and Algorithms》 这本书的介绍吧!