内容简介:我们先来看下什么是序列化,以下定义来自维基百科:序列化(serialization)在计算机科学的数据处理中,是指将数据结构或对象状态转换成可取用格式(例如存成文件,存于缓冲,或经由网络中发送),以留待后续在相同或另一台计算机环境中,能恢复原先状态的过程。依照序列化格式重新获取字节的结果时,可以利用它来产生与原始对象相同语义的副本。对于许多对象,像是使用大量引用的复杂对象,这种序列化重建的过程并不容易。面向对象中的对象序列化,并不概括之前原始对象所关系的函数。这种过程也称为对象编组(marshalling)
我们先来看下什么是序列化,以下定义来自维基百科:
序列化(serialization)在计算机科学的数据处理中,是指将数据结构或对象状态转换成可取用格式(例如存成文件,存于缓冲,或经由网络中发送),以留待后续在相同或另一台计算机环境中,能恢复原先状态的过程。依照序列化格式重新获取字节的结果时,可以利用它来产生与原始对象相同语义的副本。对于许多对象,像是使用大量引用的复杂对象,这种序列化重建的过程并不容易。面向对象中的对象序列化,并不概括之前原始对象所关系的函数。这种过程也称为对象编组(marshalling)。从一系列字节提取数据结构的反向操作,是反序列化(也称为解编组、deserialization、unmarshalling)。
可见,序列化和反序列化在计算机科学中的应用还是非常广泛的。就拿 LeetCode 平台来说,其允许用户输入形如:
[1,2,3,null,null,4,5]
这样的数据结构来描述一颗树:
([1,2,3,null,null,4,5] 对应的二叉树)
其实序列化和反序列化只是一个概念,不是一种具体的算法,而是很多的算法。并且针对不同的数据结构,算法也会不一样。本文主要讲述的是二叉树的序列化和反序列化。看完本文之后,你就可以放心大胆地去 AC 以下两道题:
<!-- more -->
前置知识
阅读本文之前,需要你对树的遍历以及 BFS 和 DFS 比较熟悉。如果你还不熟悉,推荐阅读一下相关文章之后再来看。或者我这边也写了一个总结性的文章 二叉树的遍历 ,你也可以看看。
前言
我们知道:二叉树的深度优先遍历,根据访问根节点的顺序不同,可以将其分为 前序遍历
, 中序遍历
, 后序遍历
。即如果先访问根节点就是前序遍历,最后访问根节点就是后续遍历,其它则是中序遍历。而左右节点的相对顺序是不会变的,一定是先左后右。
当然也可以设定为先右后左。
并且知道了三种遍历结果中的任意两种即可还原出原有的树结构。这不就是序列化和反序列化么?如果对这个比较陌生的同学建议看看我之前写的 《构造二叉树系列》
有了这样一个前提之后算法就自然而然了。即先对二叉树进行两次不同的遍历,不妨假设按照前序和中序进行两次遍历。然后将两次遍历结果序列化,比如将两次遍历结果以逗号“,” join 成一个字符串。 之后将字符串反序列即可,比如将其以逗号“,” split 成一个数组。
序列化:
class Solution: def preorder(self, root: TreeNode): if not root: return [] return [str(root.val)] +self. preorder(root.left) + self.preorder(root.right) def inorder(self, root: TreeNode): if not root: return [] return self.inorder(root.left) + [str(root.val)] + self.inorder(root.right) def serialize(self, root): ans = '' ans += ','.join(self.preorder(root)) ans += '$' ans += ','.join(self.inorder(root)) return ans
反序列化:
这里我直接用了力扣 105. 从前序与中序遍历序列构造二叉树
的解法,一行代码都不改。
class Solution: def deserialize(self, data: str): preorder, inorder = data.split('$') if not preorder: return None return self.buildTree(preorder.split(','), inorder.split(',')) def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: # 实际上inorder 和 preorder 一定是同时为空的,因此你无论判断哪个都行 if not preorder: return None root = TreeNode(preorder[0]) i = inorder.index(root.val) root.left = self.buildTree(preorder[1:i + 1], inorder[:i]) root.right = self.buildTree(preorder[i + 1:], inorder[i+1:]) return root
实际上这个算法是不一定成立的,原因在于树的节点可能存在重复元素。也就是说我前面说的 知道了三种遍历结果中的任意两种即可还原出原有的树结构
是不对的,严格来说应该是 如果树中不存在重复的元素,那么知道了三种遍历结果中的任意两种即可还原出原有的树结构 。
聪明的你应该发现了,上面我的代码用了 i = inorder.index(root.val)
,如果存在重复元素,那么得到的索引 i 就可能不是准确的。但是,如果题目限定了没有重复元素则可以用这种算法。但是现实中不出现重复元素不太现实,因此需要考虑其他方法。那究竟是什么样的方法呢? 接下来进入正题。
DFS
序列化
我们来模仿一下力扣的记法。 比如: [1,2,3,null,null,4,5]
(本质上是 BFS 层次遍历),对应的树如下:
选择这种记法,而不是 DFS 的记法的原因是看起来比较直观
序列化的代码非常简单, 我们只需要在普通的遍历基础上,增加对空节点的输出即可(普通的遍历是不处理空节点的)。
比如我们都树进行一次前序遍历的同时增加空节点的处理。选择前序遍历的原因是容易知道根节点的位置,并且代码好写,不信你可以试试。
因此序列化就仅仅是普通的 DFS 而已,直接给大家看看代码。
Python 代码:
class Codec: def serialize_dfs(self, root, ans): # 空节点也需要序列化,否则无法唯一确定一棵树,后不赘述。 if not root: return ans + '#,' # 节点之间通过逗号(,)分割 ans += str(root.val) + ',' ans = self.serialize_dfs(root.left, ans) ans = self.serialize_dfs(root.right, ans) return ans def serialize(self, root): # 由于最后会添加一个额外的逗号,因此需要去除最后一个字符,后不赘述。 return self.serialize_dfs(root, '')[:-1]
Java 代码:
public class Codec { public String serialize_dfs(TreeNode root, String str) { if (root == null) { str += "None,"; } else { str += str.valueOf(root.val) + ","; str = serialize_dfs(root.left, str); str = serialize_dfs(root.right, str); } return str; } public String serialize(TreeNode root) { return serialize_dfs(root, ""); } }
[1,2,3,null,null,4,5]
会被处理为 1,2,#,#,3,4,#,#,5,#,#
我们先看一个短视频:
(动画来自力扣)
反序列化
反序列化的第一步就是将其展开。以上面的例子来说,则会变成数组: [1,2,#,#,3,4,#,#,5,#,#]
,然后我们同样执行一次前序遍历,每次处理一个元素,重建即可。由于我们采用的前序遍历,因此第一个是根元素,下一个是其左子节点,下下一个是其右子节点。
Python 代码:
def deserialize_dfs(self, nodes): if nodes: if nodes[0] == '#': nodes.pop(0) return None root = TreeNode(nodes.pop(0)) root.left = self.deserialize_dfs(nodes) root.right = self.deserialize_dfs(nodes) return root return None def deserialize(self, data: str): nodes = data.split(',') return self.deserialize_dfs(nodes)
Java 代码:
public TreeNode deserialize_dfs(List<String> l) { if (l.get(0).equals("None")) { l.remove(0); return null; } TreeNode root = new TreeNode(Integer.valueOf(l.get(0))); l.remove(0); root.left = deserialize_dfs(l); root.right = deserialize_dfs(l); return root; } public TreeNode deserialize(String data) { String[] data_array = data.split(","); List<String> data_list = new LinkedList<String>(Arrays.asList(data_array)); return deserialize_dfs(data_list); }
复杂度分析
- 时间复杂度:每个节点都会被处理一次,因此时间复杂度为 $O(N)$,其中 $N$ 为节点的总数。
- 空间复杂度:空间复杂度取决于栈深度,因此空间复杂度为 $O(h)$,其中 $h$ 为树的深度。
BFS
序列化
实际上我们也可以使用 BFS 的方式来表示一棵树。在这一点上其实就和力扣的记法是一致的了。
我们知道层次遍历的时候实际上是有层次的。只不过有的题目需要你记录每一个节点的层次信息,有些则不需要。
这其实就是一个朴实无华的 BFS,唯一不同则是增加了空节点。
Python 代码:
class Codec: def serialize(self, root): ans = '' queue = [root] while queue: node = queue.pop(0) if node: ans += str(node.val) + ',' queue.append(node.left) queue.append(node.right) else: ans += '#,' return ans[:-1]
反序列化
如图有这样一棵树:
那么其层次遍历为 [1,2,3,#,#, 4, 5]。我们根据此层次遍历的结果来看下如何还原二叉树,如下是我画的一个示意图:
容易看出:
即第 1 个节点的左右子节点对应第 1 个和第 2 个节点,第 2 个节点的左右子节点对应第 3 个和第 4 个节点。。。
因此我们的思路也是同样的 BFS,并依次连接左右节点。
Python 代码:
def deserialize(self, data: str): if data == '#': return None # 数据准备 nodes = data.split(',') if not nodes: return None # BFS root = TreeNode(nodes[0]) queue = [root] # 已经有 root 了,因此从 1 开始 i = 1 while i < len(nodes) - 1: node = queue.pop(0) # lv = nodes[i] rv = nodes[i + 1] i += 2 # 对于给的的 level x,从左到右依次对应 level x + 1 的节点 # node 是 level x 的节点,l 和 r 则是 level x + 1 的节点 if lv != '#': l = TreeNode(lv) node.left = l queue.append(l) if rv != '#': r = TreeNode(rv) node.right = r queue.append(r) return root
复杂度分析
- 时间复杂度:每个节点都会被处理一次,因此时间复杂度为 $O(N)$,其中 $N$ 为节点的总数。
- 空间复杂度:$O(N)$,其中 $N$ 为节点的总数。
总结
除了这种方法还有很多方案, 比如括号表示法。 关于这个可以参考力扣 606. 根据二叉树创建字符串 ,这里就不再赘述了。
本文从 BFS 和 DFS 角度来思考如何序列化和反序列化一棵树。 如果用 BFS 来序列化,那么相应地也需要 BFS 来反序列化。如果用 DFS 来序列化,那么就需要用 DFS 来反序列化。
我们从马后炮的角度来说,实际上对于序列化来说,BFS 和 DFS 都比较常规。对于反序列化,大家可以像我这样举个例子,画一个图。可以先在纸上,电脑上,如果你熟悉了之后,也可以画在脑子里。
(Like This)
更多题解可以访问我的 LeetCode 题解仓库: https://github.com/azl3979858... 。 目前已经 30K star 啦。
关注公众号力扣加加,努力用清晰直白的语言还原解题思路,并且有大量图解,手把手教你识别套路,高效刷题。
以上所述就是小编给大家介绍的《一文带你看懂二叉树的序列化》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
一本书读懂24种互联网思维
安杰 / 台海出版社 / 2015-3-1 / 39.80元
互联网思维已经不再局限于互联网,与当初人类史上的“文艺复兴”一样,这种思维的核心即将开始扩散开去,对整个大时代造成深远的影响。本书是深入研究互联网思维的精华之作,作者深入浅出地集中阐述了24种互联网思维的内核与精神,并结合实例对这24种互联网思维逐一进行了点评。对于个人与企业如何抓住互联网思维背后正喷薄而出的工作、生活、商业上的大革新与大机遇,如何在互联网思维下进行运作,如何运用互联网思维进行升级......一起来看看 《一本书读懂24种互联网思维》 这本书的介绍吧!