在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

栏目: IT技术 · 发布时间: 5年前

内容简介:2020年6月,微软公布了Windows Subsystem for Linux 2的最新更新,全面支持CUDA和N卡GPU。在Windows上跑Ubuntu子系统并在其中运行GPU加速的深度学习代码成为现实,开发者终于不用特意为了熟悉的Linux环境而在自己的开发机上安装Windows与Ubuntu的双系统(以及Windows10之后繁琐的boot manager调试设置过程),同时又可以让Windows和Ubuntu共享同一个文件系统。笔者新买了Workstation,在各种尝试安装Windows和Ub

2020年6月,微软公布了Windows Subsystem for Linux 2的最新更新,全面支持CUDA和N卡GPU。在Windows上跑Ubuntu子系统并在其中运行GPU加速的深度学习代码成为现实,开发者终于不用特意为了熟悉的 Linux 环境而在自己的开发机上安装Windows与Ubuntu的双系统(以及Windows10之后繁琐的boot manager调试设置过程),同时又可以让Windows和Ubuntu共享同一个文件系统。

笔者新买了Workstation,在各种尝试安装Windows和Ubuntu双系统还是安装Windows的Ubuntu子系统两个选择中游走踩坑之后,终于成功在Windows 10中安装了最新的WSL2、Ubuntu系统及NVIDIA Driver,成功在Windows的Ubuntu子系统中运行深度学习代码,GPU资源全部跑满!

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

设置Windows Insider并安装更新

首先要确保电脑的BIOS选项中,Virtualization虚拟化功能是打开的。

BIOS设置好之后,我们需要在Windows中安装微软在2020年6月17日最新开放的Windows Insider Build。我们要首先注册为 Windows Insider ,加入Windows的Dev Channel,然后更新Windows为build 20150或者以上。

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

设置Windows Subsystem Linux (WSL) 2

未来微软将WSL 2变为稳定版以后,我们只需要输入下面的命令来设置WSL 2:

wsl --install

现在WSL2的功能还是测试版,我们需要用管理员权限打开PowerShell。

首先设置WSL 1:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

然后设置WSL 2:

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

重启Windows 10:

Restart-Computer

之后WSL 2成为默认之后下面的步骤就可以省略,不过现在我们还需要打开PowerShell将WSL 2设置为默认选项:

wsl.exe --set-default-version 2

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

在WSL上安装Ubuntu

在微软商店中安装 Ubuntu :

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

安装Windows Terminal

在微软商店中安装 Windows Terminal 。Windows Terminal的主要好处是未来可以在同一个窗口中一键打开多个PowerShell和Ubuntu Terminal的tab,非常方便。

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

设置WSL上面的Ubuntu

在Windows开始菜单中打开Ubuntu,第一次打开需要设置Ubuntu系统的用户名和密码,这个账户是和Windows账户分开的。

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

设置完毕后关掉原先的窗口,然后打开Windows Terminal,在下拉菜单中选择Ubuntu开启一个新的Ubuntu Terminal。

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

下面这一步很关键,我们要检查确认我们运行的是正确的WSL 2 Linux内核。在Ubuntu中输入:

uname -r

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

内核版本一定是 4.19.121 或更高。如果不是的话先在Windows的PowerShell中试下:

wsl.exe --update

如果还是不行,检查一下Windows升级设定中”Receive updates for other Microsoft products when you update Windows”这个选项是打开的:

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

然后再检查一下Windows更新,看看有没有最新的Windows Subsystem for Linux Update。

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

在Windows 10上面安装Nvidia的WSL2驱动

针对不同显卡安装相应的 驱动

未来Nvidia的驱动会自动集成在Windows Update中,但现在支持WSL2的Nvidia驱动还是开发者测试版,用户需要加入 Nvidia Developer Program 来获取最新驱动的下载权限。

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

在WSL中安装Docker

在Ubuntu Terminal中:

sudo apt -y install docker.io

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

安装Nvidia Container Toolkit

设置版本的变量,导入Nvidia库的GPG Key,把Nvidia的repo加入到Ubuntu的apt安装源中。在Ubuntu Terminal中:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

curl -s -L https://nvidia.github.io/libnvidia-container/experimental/$distribution/libnvidia-container-experimental.list | sudo tee /etc/apt/sources.list.d/libnvidia-container-experimental.list

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

更新Ubuntu的apt安装源然后安装Nvidia运行环境:

sudo apt update && sudo apt install -y nvidia-docker2

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

关闭所有的Ubuntu terminal,打开PowerShell terminal,手动关闭掉Ubuntu内核:

wsl.exe --shutdown Ubuntu

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

测试GPU计算环境

打开一个新的Ubuntu terminal并开启Docker:

sudo dockerd

在另一个新的Ubuntu terminal中运行:

sudo docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark

如果一切设置没问题的话,输出应该和下面的类似:

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

测试Tensorflow-GPU容器

在另一个新的Ubuntu terminal中运行:

docker run -u $(id -u):$(id -g) -it --gpus all -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

一切正常的话,Terminal最后会给出一个带token的jupter notebook地址。将其复制并在浏览器中打开,我们就成功开启了一个GPU加速的运行Tensorflow的Jupyter notebook:

在Windows的Ubuntu子系统运行支持CUDA的深度学习代码

现在我们就可以在这个Windows的Ubuntu子系统环境中编写、测试和运行支持CUDA的Tensorflow了!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据化运营速成手册

数据化运营速成手册

胡晨川 / 电子工业出版社 / 2017-4 / 55

《数据化运营速成手册》用于提升互联网公司员工的数据应用能力,即数据化运营能力。首先,从最常用的数据图表切入,帮助执行层正确地绘图,管理层正确地看图;接着,梳理运营中最基本的数据应用知识,涉及数据获取、数据清洗、数据认知、分析框架、指标体系、运营实验等内容。然后,介绍作者认为必要的统计学知识,包括假设检验、方差分析、回归分析和时间序列分解,并引入了管理科学中的规划求解方法。最后,介绍了数据分析工具的......一起来看看 《数据化运营速成手册》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

随机密码生成器
随机密码生成器

多种字符组合密码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具